Primjer 3.

Odrediti dijagram momenata na zadanom nosaču.

Vanjska su djelovanja: K1 = 80  kN, K2 = 150  kN, M = 60  kNm, ts = - 10oC, $ \Delta$h = 0, 5  mm, $ \varphi_{t}^{}$ = 10-4.

Poprečni presjeci svih elemenata su pravokutni:

Karakteristike gradiva su E = 3 . 107  kN/m2 za sve elemente i $ \alpha_{t}^{}$ = 10-5  K-1 za stup  4- 8.


\includegraphics[]{mep/mep.41}


Za rješavanje zadatka pomoću inženjerske metode pomaka nepoznanice su:

Momenti tromosti greda i stupova su: I1 = 0, 01536  m4, I2 = 0, 03072  m4, I3 = 0, 03840  m4. Odaberemo li E0I0 = EI1, proračunske fleksijske krutosti bit će: k23 = $ {\dfrac{{EI_1}}{{l_{23}EI_1}}}$ = $ {\frac{{1}}{{2}}}$, k34 = $ {\dfrac{{EI_1}}{{l_{34}EI_1}}}$ = $ {\frac{{1}}{{5}}}$, k26 = $ {\dfrac{{EI_2}}{{l_{26}EI_1}}}$ = $ {\frac{{1}}{{2}}}$, k37 = $ {\dfrac{{EI_3}}{{l_{37}EI_1}}}$ = $ {\frac{{1}}{{2}}}$, k48 = $ {\dfrac{{EI_2}}{{l_{48}EI_1}}}$ = $ {\frac{{1}}{{2}}}$. Za izračunavanje momenata upetosti potrebne su i (stvarne) krutosti k34* = $ {\dfrac{{EI_1}}{{l_{34}}}}$ = 92160, 0 kNm, k37* = $ {\dfrac{{EI_3}}{{l_{37}}}}$ = 230400, 0 kNm, k48* = $ {\dfrac{{EI_2}}{{l_{48}}}}$ = 230400, 0 kNm.

Moment u čvoru  2 konzolne istake  1- 2 je M21 = - K1 . l12 = - 80 kN. Iz ravnoteže momenata u čvoru  2 slijedi da je M23 = - M21 = 80 kN, pa će moment upetosti na upetom kraju jednostrano upete grede  2- 3 biti $ \overline{{M}}_{{32}}^{}$ = $ {\frac{{1}}{{2}}}$ M23 = 40 kN.

Na obostrano upetoj gredi 3- 4 momenti upetosti nastaju zbog djelovanja sile K2 i zbog vertikalnog pomaka čvora 4 do kojeg dolazi zbog skraćenja stupa 4- 8 zbog djelovanja temperature ts. To je skraćenje $ \delta_{{t_s}}^{}$ = $ \alpha_{t}^{}$ . ts . l48 = 10-5 . (- 10) . 4 = - 4 . 10-4 m, pa će vertikalni pomak čvora 4 biti $ \bar{v}_{{43}}^{}$ = $ \delta_{{t_s}}^{}$. Greda 3- 4 se (u zglobnoj shemi6) zbog pomaka $ \bar{v}_{{43}}^{}$ zakreće za kut $ \bar{\psi}_{{34}}^{}$ = $ \bar{v}_{{43}}^{}$/l34 = - $ {\frac{{4}}{{5}}}$ . 10-4. Momenti upetosti su:

$\displaystyle \overline{{M}}_{{34}}^{}$ = $\displaystyle {\dfrac{{K_2 a b^2}}{{l_{34}^2}}}$ - 6 . k34* . $\displaystyle \bar{\psi}_{{34}}^{}$ = $\displaystyle {\dfrac{{150\cdot 3 \cdot 4}}{{25}}}$ + 6 . 92160, 0 . $\displaystyle {\frac{{4}}{{5}}}$ . 10-4 = 75, 0 + 44, 24 = 116, 24 kNm,    
$\displaystyle \overline{{M}}_{{34}}^{}$ = $\displaystyle {\dfrac{{K_2 a^2 b}}{{l_{34}^2}}}$ - 6 . k34* . $\displaystyle \bar{\psi}_{{34}}^{}$ = - $\displaystyle {\dfrac{{150\cdot 2 \cdot 9}}{{25}}}$ + 44, 24 = - 108, 0 + 44, 24 = - 63, 76 kNm.    

Na obostrano upetoj gredi 3- 7 momenti upetosti nastaju zbog zaokreta temelja za kut $ \varphi_{t}^{}$:

$\displaystyle \overline{{M}}_{{37}}^{}$ = - 2 . k37* . $\displaystyle \varphi_{t}^{}$ = - 2 . 230400, 0 . 10-4 = - 46, 08 kNm,    
$\displaystyle \overline{{M}}_{{73}}^{}$ = - 4 . k37* . $\displaystyle \varphi_{t}^{}$ = - 4 . 230400, 0 . 10-4 = - 92, 16 kNm.    

U čvoru 4 jednostrano upete grede 4- 8 moment upetosti nastaje zbog horizontalnog pomaka ležaja 8. Greda 4- 8 se (u zglobnoj shemi7) zakreće za kut $ \bar{\psi}_{{48}}^{}$ = $ \Delta$h/l48 = 0, 0005/4 = 1, 25 . 10-4, pa je moment upetosti

$\displaystyle \overline{{M}}_{{48}}^{}$ = - 3 . k48* . $\displaystyle \bar{\psi}_{{48}}^{}$ = - 3 . 230400, 0 . 1, 25 . 104 = - 86, 40 kNm.

Ukupni su momenti Mij na krajevima elemenata zbroj momenata upetosti $ \overline{{M}}_{{ij}}^{}$ i momenata mij zbog zaokreta i pomaka njihovih čvorova:

Mij = mij + $\displaystyle \overline{{M}}_{{ij}}^{}$.

Pomake čvorova vij treba izraziti kao funkcije translacijskog pomaka u. U prikazanom planu pomaka na zglobnoj shemi, za u = 1,

\includegraphics[]{mep/mep.42}

očitavamo:8

v23(u = 1) = 0,          v32(u = 1) = 3/4,          $ \psi_{{23}}^{}$(u = 1) = - $ {\dfrac{{v_{23}(u\!=\!1) - v_{32}(u\!=\!1)}}{{l_{23}}}}$ = - $ {\tfrac{{0 - 3/4}}{{2}}}$ = 3/8;
v34(u = 1) = 3/4,          v43(u = 1) = 0,          $ \psi_{{34}}^{}$(u = 1) = - $ {\dfrac{{v_{34}(u\!=\!1) - v_{43}(u\!=\!1)}}{{l_{34}}}}$ = - $ {\tfrac{{3/4 - 0}}{{5}}}$ = - 3/20;
v26(u = 1) = 1,          v62(u = 1) = 0,          $ \psi_{{62}}^{}$(u = 1) = - $ {\dfrac{{v_{26}(u\!=\!1) - v_{62}(u\!=\!1)}}{{l_{26}}}}$ = - $ {\tfrac{{1-0}}{{4}}}$ = - 1/4;
v37(u = 1) = 5/4,          v73(u = 1) = 0,          $ \psi_{{37}}^{}$(u = 1) = - $ {\dfrac{{v_{37}(u\!=\!1) - v_{73}(u\!=\!1)}}{{l_{37}}}}$ = - $ {\tfrac{{5/4 - 0}}{{5}}}$ = - 1/4;
v48(u = 1) = 1,          v84(u = 1) = 0,          $ \psi_{{48}}^{}$(u = 1) = - $ {\dfrac{{v_{48}(u\!=\!1) - v_{84}(u\!=\!1)}}{{l_{48}}}}$ = - $ {\tfrac{{1-0}}{{4}}}$ = - 1/4.

Izrazi za momente na krajevima grednih elemenata sada su:

M21 = - 80,    
M23 = 80,    
M32 = 3 k23 $\displaystyle \varphi_{3}^{}$ - 3 k23 $\displaystyle \psi_{{23}}^{}$ + $\displaystyle \overline{{M_{23}}}$    
  = 3 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle \varphi_{3}^{}$ - 3 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle {\tfrac{{3}}{{8}}}$ . u + 40, 0    
  = $\displaystyle {\tfrac{{3}}{{2}}}$ $\displaystyle \varphi_{3}^{}$ - $\displaystyle {\tfrac{{9}}{{16}}}$ u + 40, 0,    
M34 = 4 k34 $\displaystyle \varphi_{3}^{}$ + 2 k34 $\displaystyle \varphi_{4}^{}$ - 6 k34 $\displaystyle \psi_{{34}}^{}$ + $\displaystyle \overline{{M_{34}}}$    
  = 4 . $\displaystyle {\tfrac{{1}}{{5}}}$ . $\displaystyle \varphi_{3}^{}$ + 2 . $\displaystyle {\tfrac{{1}}{{5}}}$ . $\displaystyle \varphi_{4}^{}$ - 6 . $\displaystyle {\tfrac{{1}}{{5}}}$ . $\displaystyle \bigl($ - $\displaystyle {\tfrac{{3}}{{20}}}$$\displaystyle \bigr)$ . u + 116, 24    
  = $\displaystyle {\tfrac{{4}}{{5}}}$ $\displaystyle \varphi_{3}^{}$ + $\displaystyle {\tfrac{{2}}{{5}}}$ $\displaystyle \varphi_{4}^{}$ + $\displaystyle {\tfrac{{9}}{{50}}}$ u + 116, 24,    
M43 = 2 k34 $\displaystyle \varphi_{3}^{}$ + 4 k34 $\displaystyle \varphi_{4}^{}$ - 6 k34 $\displaystyle \psi_{{34}}^{}$ + $\displaystyle \overline{{M_{43}}}$    
  = 2 . $\displaystyle {\tfrac{{1}}{{5}}}$ . $\displaystyle \varphi_{3}^{}$ + 4 . $\displaystyle {\tfrac{{1}}{{5}}}$ . $\displaystyle \varphi_{4}^{}$ - 6 . $\displaystyle {\tfrac{{1}}{{5}}}$ . $\displaystyle \bigl($ - $\displaystyle {\tfrac{{3}}{{20}}}$$\displaystyle \bigr)$ . u - 63, 76    
  = $\displaystyle {\tfrac{{2}}{{5}}}$ $\displaystyle \varphi_{3}^{}$ + $\displaystyle {\tfrac{{4}}{{5}}}$ $\displaystyle \varphi_{4}^{}$ + $\displaystyle {\tfrac{{9}}{{50}}}$ u - 63, 76,    
M45 = - M = 60,    
M62 = 3 k26 $\displaystyle \varphi_{6}^{}$ - 3 k26 $\displaystyle \psi_{{26}}^{}$ + $\displaystyle \overline{{M}}_{{26}}^{}$    
  = 3 k26 . 0 - 3 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle \bigl($ - $\displaystyle {\tfrac{{1}}{{4}}}$$\displaystyle \bigr)$ . u + 0    
  = $\displaystyle {\tfrac{{3}}{{8}}}$ u,    
M37 = 4 k37 $\displaystyle \varphi_{3}^{}$ + 2 k37 $\displaystyle \varphi_{7}^{}$ - 6 k37 $\displaystyle \psi_{{37}}^{}$ + $\displaystyle \overline{{M_{37}}}$    
  = 4 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle \varphi_{3}^{}$ + 0 - 6 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle \bigl($ - $\displaystyle {\tfrac{{1}}{{4}}}$$\displaystyle \bigr)$ . u - 46, 08    
  = 2 $\displaystyle \varphi_{3}^{}$ + $\displaystyle {\tfrac{{3}}{{4}}}$u - 46, 08,    
M73 = 2 k37 $\displaystyle \varphi_{3}^{}$ + 4 k37 $\displaystyle \varphi_{7}^{}$ - 6 k37 $\displaystyle \psi_{{37}}^{}$ + $\displaystyle \overline{{M_{73}}}$    
  = 2 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle \varphi_{3}^{}$ + 0 - 6 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle \bigl($ - $\displaystyle {\tfrac{{1}}{{4}}}$$\displaystyle \bigr)$ . u - 92, 16    
  = $\displaystyle \varphi_{3}^{}$ + $\displaystyle {\tfrac{{3}}{{4}}}$u - 92, 16,    
M48 = 3 k48 $\displaystyle \varphi_{4}^{}$ - 3 k48 $\displaystyle \psi_{{48}}^{}$ + $\displaystyle \overline{{M_{48}}}$    
  = 3 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle \varphi_{4}^{}$ - 3 . $\displaystyle {\tfrac{{1}}{{2}}}$ . $\displaystyle \bigl($ - $\displaystyle {\tfrac{{1}}{{4}}}$$\displaystyle \bigr)$ . u - 86, 4    
  = $\displaystyle {\tfrac{{3}}{{2}}}$$\displaystyle \varphi_{4}^{}$ + $\displaystyle {\tfrac{{3}}{{8}}}$u - 86, 4.    

Jednadžbe ravnoteže momenata u čvorovima 3 i 4 su:

$\displaystyle \sum\limits_{{i}}^{}$M3i = 0         $\displaystyle \Longrightarrow$         M32 + M34 + M37 = 4, 3 $\displaystyle \varphi_{3}^{}$ + 0, 4 $\displaystyle \varphi_{4}^{}$ + 0, 3675 u + 110, 16 = 0,    
$\displaystyle \sum\limits_{{i}}^{}$M4i = 0         $\displaystyle \Longrightarrow$         M43 + M45 + M48 = 0, 4 $\displaystyle \varphi_{3}^{}$ + 2, 3 $\displaystyle \varphi_{4}^{}$ + 0, 555 u - 90, 16 = 0,    

dok je jednadžba virtualnog rada:

$\displaystyle \sum\limits_{{\{ik\}}}^{}$(Mik$\displaystyle \psi_{{ik}}^{}$) + K1 . $\displaystyle \delta_{1}^{}$ + K2 . $\displaystyle \delta_{2}^{}$ + M$\displaystyle \psi_{{45}}^{}$ = 0,

odnosno,

  $\displaystyle \left[\vphantom{ M_{32} \psi_{32} + (M_{34} + M_{43} ) \psi_{34} ...
...si_{45} + M_{62}\psi_{62} + (M_{37}+M_{73})\psi_{37} + M_{48}\psi_{48} }\right.$M32$\displaystyle \psi_{{32}}^{}$ + (M34 + M43)$\displaystyle \psi_{{34}}^{}$ + M45$\displaystyle \psi_{{45}}^{}$ + M62$\displaystyle \psi_{{62}}^{}$ + (M37 + M73)$\displaystyle \psi_{{37}}^{}$ + M48$\displaystyle \psi_{{48}}^{}$$\displaystyle \left.\vphantom{ M_{32} \psi_{32} + (M_{34} + M_{43} ) \psi_{34} ...
...si_{45} + M_{62}\psi_{62} + (M_{37}+M_{73})\psi_{37} + M_{48}\psi_{48} }\right]$    
                           + K1$\displaystyle {\frac{{3}}{{8}}}$ + K2$\displaystyle \left(\vphantom{ -\tfrac{2}{5}\cdot \tfrac{3}{4} }\right.$ - $\displaystyle {\tfrac{{2}}{{5}}}$ . $\displaystyle {\tfrac{{3}}{{4}}}$$\displaystyle \left.\vphantom{ -\tfrac{2}{5}\cdot \tfrac{3}{4} }\right)$ + M$\displaystyle \psi_{{45}}^{}$    
           = - 0, 3675 $\displaystyle \varphi_{{3}}^{}$ - 0, 555 $\displaystyle \varphi_{4}^{}$ - 0, 8274375 u + 48, 288 = 0    

Te tri jednadžbe tvore simetrični sustav s tri nepoznanice:

  4, 3$\displaystyle \varphi_{3}^{}$ + 0, 4$\displaystyle \varphi_{4}^{}$ + 0, 3675u = - 110, 16,    
  0, 4$\displaystyle \varphi_{3}^{}$ + 2, 3$\displaystyle \varphi_{4}^{}$ + 0, 555u = - 90, 16,    
  0, 3675$\displaystyle \varphi_{3}^{}$ + 0, 555$\displaystyle \varphi_{4}^{}$ + 0, 8274375u = 48, 288,    

čije je rješenje:

$\displaystyle \varphi_{3}^{}$ = - 33, 0234,            $\displaystyle \varphi_{4}^{}$ = 32, 5979,            u = 51, 1607,

pa su konačni momenti na krajevima grednih elemenata:

M32 = - 38, 31  kNm,    
M34 = 112, 07  kNm,    
M43 = - 41, 68  kNm,    
M62 = 19, 18  kNm,    
M37 = - 73, 76  kNm,    
M73 = - 86, 81  kNm,    
M48 = - 18, 32  kNm,    

a traženi je momentni dijagram:

\includegraphics[]{mep/mep.43}



... shemi6
Plan pomaka crtamo na zglobnoj shemi u kojoj su spriječeni translacijski pomak u i pomak ležaja $ \Delta$h, a omogućen je pomak  $ \bar{v}_{{43}}^{}$.
... shemi7
Sada plan pomaka crtamo na zglobnoj shemi u kojoj su spriječeni translacijski pomak u i pomak  $ \bar{v}_{{43}}^{}$, a omogućen je pomak $ \Delta$h.
...očitavamo:8
Ishodišta lokalnih koordinatnih sustava na pojedinim elementima uvijek su u čvorovima s manjim brojem -- npr. na elementu 2- 6 ishodište je u čvoru  2.

KF    2001-12-05