Na zadanom nosaču analitičkim postupkom odrediti momentni dijagram ako je K1 = 100 kN i K2 = 50 kN.
Pri izračunavanju reakcija zadani nosač možemo smatrati prostom gredom:
Fx = 0 | Ah = 0 kN, | |||||
M(B) = 0 | - Av . 10 + K1 . 7 + K2 . 4 = 0 | Av = 90 kN, | ||||
M(A) = 0 | Bv . 10 - K1 . 3 - K2 . 6 = 0 | Bv = 60 kN. | ||||
Provjerimo dobivene vrijednosti:
| ||||||
Fy = 0 | Av + Bv - K1 - K2 = 0 | 90 + 60 - (100 + 50) = 0. |
Sile u gredi u presjecima između točaka A i D, te između B i G, možemo također izračunati kao da se radi o prostoj gredi -- za tri nepoznate unutarnje sile na raspolaganju imamo tri jednadžbe ravnoteže promatranoga dijela nosača. Ali, na ojačanom dijelu, između točaka D i G, osim same grede moramo presiječi i (barem) jedan štap ojačanja, te je sila u tom štapu četvrta nepoznanica.4 Za određivanje te sile postoji, međutim, dodatni uvjet: znamo da zglob ne može preuzeti moment, pa će pri presjeku kroz zglob C na lijevi ili desni dio nosača djelovati, osim zadanih sila i reakcija, tri nepoznate sile: sila S0 u horizontalnom štapu 0 iznad zgloba te sile NC i TC u zglobu.
Iznos sile S0 neposredno slijedi iz jednadžbe momenata oko zgloba C na, primjerice, desnom dijelu nosača:
Dobivenu vrijednost možemo provjeriti pomoću izraza ravnoteže lijevoga dijela:
Sile u kosim i vertikalnim štapovima ojačanja izračunavamo iz uvjeta ravnoteže čvorova H i I.
Sa V3 označit ćemo silu u vertikali 3 a sa S1 silu u kosom štapu 1; ako je (oštri) kut između horizontale i osi tog štapa, horizontalna je komponenta te sile S1h = S1 . cos, dok je njena vertikalna komponenta S1v = S1 . sin. Jednadžbe ravnoteže čvora H daju:
Fx = 0 | S1h = S = - 125 kN, | |
pa je S1v = S1h . tg = - 125 kN i S1 = = - 125 kN; | ||
Fy = 0 | V3 = - S1v = 125 kN |
Sile S2 i V4 u štapovima 2 i 4 dobivaju se iz analognih izraza za čvor I.
Sada možemo izračunati vrijednosti momenata u karakterističnim točkama grede. Pritom gredu zadanoga nosača možemo smatrati prostom gredom na koju, osim zadanih sila i reakcija, kao vanjske sile djeluju i sile u štapovima. U izrazima sa slovnim oznakama sila momente sila u štapovima pišemo s predznacima koji odgovaraju vlačnom smjeru tih sila, a zatim uvrštavamo pozitivne ili negativne vrijednosti sila, ovisno o smjeru u kojem stvarno djeluju.
Počnemo li slijeva:
MD | = Av . 2 = 90 . 2 = 180 kNm, | |
MK1 | = Av . 3 + S1v . 1 = 90 . 3 + (- 125) . 1 = 145 kNm, | |
ME | = Av . 4 + S1v . 2 - K1 . 1 = 90 . 4 + (- 125) . 2 - 100 . 1 = 10 kNm | |
i, kao kontrola:
| ||
MC | = Av . 5 + S1v . 3 - K1 . 2 + V3 . 1 = 0 kNm. |
MG | = Bv . 2 = 60 . 2 = 120 kNm, | |
MF | = Bv . 4 + S2v . 2 = 60 . 4 + (- 125) . 2 = - 10 kNm | |
te, ponovo, za kontrolu:
| ||
MC | = Bv . 5 + S2v . 3 + V4 . 1 - K2 . 1 = 0 kNm. |
Uočite da kroz zglob dijagram prolazi bez loma; lomovi postoje samo u točkama u kojima djeluju koncentrirane sile, uključujući i sile u štapovima. Osim toga, smjer loma odgovara smjeru djelovanja sile: u kosim štapovima sile su tlačne pa na gredu djeluju `prema dolje', dok su sile u vertikalama vlačne; u čvoru F, doduše, osim vlačne sile V4, djeluje i sila K2 u suprotnom smjeru, ali je V4 > K2, pa je rezultirajuće djelovanje `prema gore'.
Izračunavanje poprečnih i uzdužnih sila u karakterističnim točkama grede i crtanje dijagrama prepuštamo, kao vježbu, čitatelju. Lako je vidjeti da uzdužna sila postoji samo u ojačanom dijelu grede te da je duž tog dijela konstantna, po iznosu jednaka sili S0, ali suprotnog smjera djelovanja, dakle, vlačna.