Tetiva konike je svaka dužina kojoj krajnje točke leže na toj konici. Polovišta međusobno paralelnih tetiva neke krivulje 2. stupnja su kolinearne točke i njihovu spojnicu nazivamo promjerom konike. Za tako definiran promjer kažemo da je konjugiran ili spregnut smjeru paralelnih tetiva. Tangente u realnim sjecištima konike i njezina promjera uvijek su međusobno paralelne i istog su smjera kao i promjeru konjugirane tetive.
Svaka konika ima neizmjerno mnogo promjera, a svi oni prolaze jednom točkom koju nazivamo središtem konike. Elipse i hiperbole imaju središte u konačnosti, a parabola u beskonačno dalekoj točki svoje osi.
Promatramo sve tetive konike koje su paralelne s jednim njezinim promjerom. Polovišta tih tetiva ležat će na drugom promjeru koji je istog smjera kao i tetive konjugirane prvom promjeru. Za takva dva promjera kažemo da su konjugirani ili spregnuti. Dva promjera konike su konjugirana ili spregnuta ako svaki od njih raspolavlja tetive paralelne s drugim promjerom.
Valja istaknuti sljedeće:
- oba konjugirana promjera sijeku elipsu u realnim točkama
- hiperbolu jedan promjer siječe realno dok ju njemu konjugirani promjer siječe u paru imaginarnih točaka
- svi su promjeri parabole paralelni s njezinom osi, a beskonačno daleki pravac ravnine konjugiran je svakom od njih.
Zbog svojstva tangenata u krajnjim točkama promjera, i činjenice da svaki promjer elipse tu koniku siječe realno, za konjugirane promjere elipse vrijedi: Dva su promjera elipse konjugirana ako su tangente u krajnjim točkama jednog promjera paralelne s drugim.
Općenito, konjugirani promjeri elipse i hiperbole nisu okomiti (ortogonalni). Međutim, za svaku takvu krivulju postoji točno jedan par okomitih konjugiranih promjera. Par okomitih konjugiranih promjera elipse ili hiperbole nazivamo osima te konike.
Pravci na kojima leži ortogonalni par konjugiranih promjera elipse i hiperbole ujedno su i osi simetrije tih krivulja (krivulja se preslikava sama u sebe s obzirom na osne simetrije određene tim pravcima). Za razliku od toga, parabola ima samo jednu os simetrije. Točke u kojima konika siječe svoju os simetrije nazivamo tjemenima ili tjemenim točkama konike. Elipsa ima četiri tjemene točke, hiperbola dvije, a parabola samo jednu.
Kružnica, kao poseban slučaj elipse, ima i osobita svojstva vezana za konjugiranost promjera. Naime, već ste u osnovnoj školi doznali da takva krivulja ima beskonačno mnogo osi simetrije (simetrična je s obzirom na svaki pravac kroz njezino središte) i da joj je u svakoj točki tangenta okomita na promjer kroz tu točku. Stoga samo za kružnicu vrijedi sljedeće pravilo: Svaka su dva međusobno okomita promjera kružnice konjugirana.
Interaktivna slika 9
Interaktivna slika 10
Interaktivna slika 11
Interaktivna slika 12
Interaktivna slika 13