10. Richmondova minimalna ploha

In[252]:=

wei[1/#^2&, #^(n + 1) &][z] ;

In[253]:=

richmondmincurve[n_][z_] := {-1/(2z) - z^(2n + 1)/(4n + 2) - I/(2z) + I z^(2n + 1)/(4n + 2), z^n/n} ;

In[254]:=

richmondpolar[n_][t_][r_, theta_] := {-Cos[t + theta]/(2r) - (r^(1 + 2n) Cos[t - (1 + 2n) thet ...  -Sin[t + theta]/(2r) + (r^(1 + 2n) Sin[t - (1 + 2n) theta])/(2 + 4n), (r^n Cos[t - n theta])/n} ;

In[255]:=

GZ[richmondpolar[1] [0]][r, theta]

Out[255]=

-(64 r^6)/(1 + r^4)^4

In[256]:=

RowBox[{ParametricPlot3D, [, RowBox[{Append[richmondpolar[1] [0] [r, theta], Hue[GZ[richmondpo ... 2754;None, ,, BoxedFalse, ,, LightingFalse, ,, ImageSize {400, 400}}], ]}]

[Graphics:../HTMLFiles/index_219.gif]

Out[256]=

⁃Graphics3D⁃

In[257]:=

xuv[n_][t_][u_, v_] := -Cos[t + u]/(2v) - (v^(1 + 2n) Cos[t - (1 + 2n) u])/(2 + 4n) ; yuv[n_][ ... wBox[{dv, =, 0.05}], ;}] f[n_][t_][u_, v_] := {xuv[n][t][u, v], yuv[n][t][u, v], zuv[n][t][u, v]}

In[267]:=

SZ[f][u, v]

Out[267]=

0

In[268]:=

K1[f][u, v]

Out[268]=

-(Sec[u]^2 Sec[v]^2)/(Sec[u]^2 + Tan[v]^2)^2^(1/2)

In[269]:=

K2[f][u, v]

Out[269]=

(Sec[u]^2 Sec[v]^2)/(Sec[u]^2 + Tan[v]^2)^2^(1/2)

In[270]:=

ploha[f[1][0]][u, v][u0, u1, du][v0, v1, dv][AxesLabel {x, y, z}, AxesNone, BoxedFalse, ImageSize {400, 400}]

[Graphics:../HTMLFiles/index_229.gif]

Out[270]=

⁃Graphics3D⁃

In[271]:=

RowBox[{ploha[f[2][0]][u, v][u0, u1, du][v0, v1, dv], [, RowBox[{AxesLabel {x, y, z},  ... RowBox[{{, RowBox[{2.3, ,, RowBox[{-, 1.5}], ,, 3}], }}]}], ,, ImageSize {400, 400}}], ]}]

[Graphics:../HTMLFiles/index_232.gif]

Out[271]=

⁃Graphics3D⁃

In[272]:=

du = Pi/48 ;

In[273]:=

RowBox[{ploha[f[3][0]][u, v][u0, u1, du][v0, v1, dv], [, RowBox[{AxesLabel {x, y, z},  ... RowBox[{{, RowBox[{2.3, ,, RowBox[{-, 1.5}], ,, 3}], }}]}], ,, ImageSize {400, 400}}], ]}]

[Graphics:../HTMLFiles/index_236.gif]

Out[273]=

⁃Graphics3D⁃

In[274]:=

du = Pi/48 ; RowBox[{RowBox[{v0, =, 0.3}], ;}] v1 = 2 ;

In[277]:=

ploha[f[1][0]][u, v][u0, u1, du][v0, v1, dv][AxesLabel {x, y, z}, AxesNone, BoxedFalse, ImageSize {400, 400}]

[Graphics:../HTMLFiles/index_240.gif]

Out[277]=

⁃Graphics3D⁃


Created by Mathematica  (April 30, 2004)