3. Heltokat

In[123]:=

xuv[t_][u_, v_] := Cos[t] * Sinh[v] * Sin[u] + Sin[t] * Cosh[v] * Cos[u] ; yuv[t_][u_, v_] :=  ... 2 ; RowBox[{RowBox[{dv, =, 0.2}], ;}] f[t_][u_, v_] := {xuv[t][u, v], yuv[t][u, v], zuv[t][u, v]}

In[133]:=

f[0][u, v]

Out[133]=

{Sin[u] Sinh[v], -Cos[u] Sinh[v], u}

In[134]:=

SZ[f[t]][u, v]

Out[134]=

0

In[135]:=

K1[f[t]][u, v]

Out[135]=

-Sech[v]^4^(1/2)

In[136]:=

K2[f[t]][u, v]

Out[136]=

Sech[v]^4^(1/2)

In[137]:=

ploha[f[Pi/3]][u, v][u0, u1, du][v0, v1, dv][PlotRange {{-4, 4}, {-4, 4}, {-4, 4}}]

[Graphics:../HTMLFiles/index_68.gif]

Out[137]=

⁃Graphics3D⁃

In[138]:=

RowBox[{Show, [, RowBox[{RowBox[{GraphicsArray, [, RowBox[{{{ploha1[f[0]][u, v][u0, u1, du][v0 ...  ]}], ,, , DisplayFunction$DisplayFunction, ,, ImageSize {800, 500}}], ]}]

[Graphics:../HTMLFiles/index_71.gif]

Out[138]=

⁃GraphicsArray⁃

In[139]:=

Table[ploha[f[t]][u, v][u0, u1, du][v0, v1, dv][PlotRange {{-4, 4}, {-4, 4}, {-4, 4}}, ... dentity, AxesNone, BoxedFalse, ImageSize {400, 400}], {t, 0, Pi/2, Pi/24}]

Out[139]=

{⁃Graphics3D⁃, ⁃Graphics3D⁃, ⁃Graphics3D⁃, ⁃Graphics ... 9;Graphics3D⁃, ⁃Graphics3D⁃, ⁃Graphics3D⁃, ⁃Graphics3D⁃}


Created by Mathematica  (April 30, 2004)