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ABSTRACT

In this paper we describe and visualize the densest ball and
horoball packing configurations to the simply truncated 3-
dimensional hyperbolic Coxeter orthoschemes with parallel
faces, using the results of [24]. These beautiful packing
arrangements describe and show the very interesting struc-
ture of the mentioned orthoschemes and the corresponding
Coxeter reflection group. We use the Beltrami-Cayley-
Klein ball model of 3-dimensional hyperbolic space H3, the
images were made by the Python programming language.
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Vizualizacija pakiranja sfera i horosfera povezanih
s Coxeterovim popločavanjem krnjim ortoshe-
mama paralelnih strana

SAŽETAK

U ovom radu opisujemo i vizualiziramo najgušće kon-
figuracije pakiranja sfera i horosfera na krnjim 3-
dimenzionalnim hiperboličnim Coxeterovim ortoshemama
s paralelnim stranama, koristeći rezultate [24]. Ovi lijepi
rasporedi pakiranja opisuju i pokazuju vrlo zanimljivu struk-
turu spomenutih ortoshema i odgovarajuće Coxeterove
zrcalne grupe. Koristimo sferni Beltrami-Cayley-Kleinov
model 3-dimenzionalnog hiperboličnog prostora H3. Slike
su izrad-ene programskim jezikom Python.

Ključne riječi: Coxeterova grupa, horosfera, hiperbolična
geometrija, pakiranje, popločavanje

1 Introduction

Visualization of mathematical problems is not only a repre-
sentation of specific objects or an approach in the teaching
process, but also plays an important role in understanding
the problem and developing solution steps. It can be shown
the deeper context of the problem and the possibilities to
move forward.

In hyperbolic spaces Hn for 2 ≤ n ≤ 9, the known dens-
est ball and horoball configurations are derived by Coxeter
simplex tilings, generated by reflections in the simplex hy-
perplanes [5]. In the former papers, they do not have parallel
faces.

In periodic ball or horoball packings, the local density de-
scribed below can be extended to the entire hyperbolic space
and it is related to the simplicial density function that we
generalized in [19] and [20]. In this paper, we shall use
such definition of packing density by [24].

A Coxeter simplex in Hn
has dihedral angles either integral

submultiples of π or zero. Thus, the group generated by re-
flections in the simplex side hyperplanes is isometry group
of Hn with the Coxeter simplex as fundamental domain.
Hence the group gives regular tessellations. We note here
that the Coxeter groups are finite for Sn, and infinite for En

or Hn
[1, 5, 7, 8, 9, 17, 23].

There are non-compact Coxeter simplices in Hn
with ideal

vertices in ∂Hn, however, only for dimensions 2 ≤ n ≤ 9;
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and only a finite number of them exists in dimensions n≥ 3,
see Johnson et al. [9] and Kellerhals [10]. Such simplices
are the most elementary building blocks of hyperbolic man-
ifolds, the volume of which is an important topological
invariant.

The simplicial packing density upper bound d3(∞) = (1+
1
22 − 1

42 − 1
52 +

1
72 +

1
82 − 1

102 − 1
112 + . . .)−1 = 0.85327 . . .

cannot be achieved by packing regular balls, instead it is
realized by horoball packings of H3

, the regular ideal sim-
plex tiles. More precisely, the centres of horoballs in ∂H3

lie at the vertices of the ideal regular Coxeter simplex tiling
with Schläfli symbol (3,3,6), see [2, 3, 4, 6, 18].

In [11] we have proved that this optimal horoball packing
configuration in H3 is not unique. We gave asymptotic
Coxeter packings by horoballs of different types, that have
different relative densities with respect to the fundamen-
tal domain, yielding the Böröczky–Florian-type simplicial
upper bound [4].

Furthermore, in [19, 20] we have found that, by allow-
ing horoballs of different types at each vertex of a totally
asymptotic simplex and generalizing the simplicial density
function to Hn

for (n≥ 2), the Böröczky-type density upper
bound is not valid for the fully asymptotic simplices for
n ≥ 4. For example, in H4

the locally optimal simplicial
packing density is 0.77038 . . . , higher than the Böröczky-
type density upper bound of d4(∞) = 0.73046 . . . using
horoballs of a single type. However, these ball packing con-
figurations are only locally optimal and cannot be extended
to the entirety of the ambient space Hn

. In [12] we found
seven horoball packings of Coxeter simplex tilings in H4

that yield densities of 0.71645, counterexamples to L. Fejes
Tóth’s conjecture stated in his foundational book Regular
Figures [6, p. 323].

In [24], we reported [13] and [14] and considered the Cox-
eter tilings in H3 where the generating orthoscheme was a
simple truncated one with some parallel faces i.e. their dihe-
dral angle is zero (symbol ∞). Here we studied the Coxeter
tilings with Schläfli symbol (∞,q,r,∞) (see Fig. 1. second
graph). We determined their optimal ball and horoball pack-
ings, proved that the densest packing was realized at tilings
(∞,3,6,∞), and (∞;6;3;∞) with density ≈ 0.8413392, see
Fig.1, 12, 19 and [20, 21, 22] and [14, 15, 16] for further
connections.

2 Basic Notions

For the computations and visualization, we use the projec-
tive model of the hyperbolic space H3 [1, 16, 23]. The

model is defined in general in the pseudo-Euclidean or
Lorentz space E1,n with signature (1,n), i.e. consider real
vector space Vn+1 equipped with the bilinear form:

〈 x, y〉=−x0y0 + x1y1 + · · ·+ xnyn

and the following equivalence relation:

x(x0, ...,xn)∼ y(y0, ...,yn)⇔∃ c ∈ R\{0} : y = c ·x

to interpret the same point [x] = [y] of Hn. The following
quadratic form (as a cone in V n+1):

Q = {[x] ∈ P n|〈 x, x〉= 0}=: ∂Hn

defines the boundary points (at infinity), the inner or proper
points of Hn (for them 〈 x, x〉 < 0), and the points lying
outside of Q are outer points of Hn (for them 〈 x, x〉> 0).
We can also define a linear polarity between the points and
hyperplanes: the polar hyperplane (a) of a point [x] ∈ P n is
Pol(x) := (a) = {[y]∈P n|〈 x, y〉= 0}, and hence x∈Vn+1

is incident with a ∈ Vn+1 iff x a = 0. In this projective
model, we can define a metric structure related to the above
bilinear form, where for the distance of two proper (inner)
points:

cosh
(

d(x,y)
k

)
=

−〈 x, y〉√
〈 x, x〉〈 y, y〉

, (1)

(at present we may choose k = 1).

This corresponds to the distance formula in the well-known
Beltrami-Cayley-Klein model of Hn of constant curvature
K =−k2 =−1. We do not detail the analogous angle met-
ric for the dual form space V n+1 that present hyperfaces
and −cos expresses their angles of normal vectors (through
complex numbers), like in the spherical plane and space
[1, 9, 16, 17, 24](see also sect 3).
For a general projective coordinate simplex A0A1A2A3

we use the vector basis a0,a1,a2,a3 ∈ V4; for its faces
b0,b1,b2,b3 stand b0,b1,b2,b3 ∈ V 4 with aib j = δ

j
i , the

Kronecher symbol (Einstein convention). A symmetric lin-
ear polarity, i.e. plane −→ point mapping: V 3 u −→
u ∈ V4 will be defined by bi −→ Bi, bi −→ bi ja j with
bi j = b ji(i, j ∈ {0,1,2,3}), equivalent with a scalar prod-
uct 〈u,v〉 −→ R, 〈biui,b jv j〉 = biruiarb jv j = uibirδ

j
rv j =

uibi jv j.
If the polarity is invertible, i.e (bi j)−1 = ai j = 〈ai,a j〉, as
for H3, then forms (normal vectors of planes) and vectors
can be “identified”, as later on a polar plane←→ with its
pole point in H3.
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3 The structure of truncated asymptotic or-
thoscheme

Our aim is to visualize the truncated simply asymptotic
orthoschemes that contain parallel faces in H3. This or-
thoschemes are represented by their Coxeter graphs (see
Fig.1-2), where the angle parameters p,q,r satisfy the in-
equalities π

p +
π

q < π

2 and π

q +
π

r ≥
π

2 .

Figure 1: Coxeter graphs of truncated asymptotic or-
thoscheme

Figure 2: A simply truncated orthoscheme with polar a3 of
A3

π

p +
π

q < π

2 , π

q +
π

r ≥
π

2

First, we will study the truncated orthoschemes that have the
corresponding singular Coxeter-Schläfli matrix as follows
(e.g from [7, 17]):

C =


1 −cos( π

p ) 0 0 0
−cos( π

p ) 1 −cos(π

q ) 0 0
0 −cos(π

q ) 1 −cos(π

r ) 0
0 0 −cos(π

r ) 1 c4
0 0 0 c4 1

 ,
(2)

where the constant c4 can be uniquely determined by the
zero determinant condition

c4 =−

√√√√1+ cos2( π

p )cos2( π

r )− cos2( π

p )− cos2( π

q )− cos2( π

r )

1− cos2( π

p )− cos2( π

q )
.

In our case, there are two parallel faces that meet in an ideal
point. That means the dihedral angle between these two
hyperplanes is equal to 0. Therefore, we assume that these
two hyperplanes are b0 and b1. Thus, their dihedral angle is
w01 = π

p → 0, if p tends to ∞, then Coxeter-Schläfli matrix
(2) would change to the following form

C
′
=


1 −1 0 0 0
−1 1 −cos(π

q ) 0 0
0 −cos(π

q ) 1 −cos(π

r ) 0
0 0 −cos(π

r ) 1 −1
0 0 0 −1 1

 . (3)

As a consequence, plane b3 and the polar plane a3 of vertex
A3 will also be parallel, as the second graph in Fig. 1 shows.

The computer visualization of the truncated orthoschemes
are given in Fig. 4.

Figure 3: Truncated orthoscheme with the two intersection
pairs of its parallel faces. b0 and b1 intersect in
ideal line k, b3 and a3 = A2A4A5 do that in l. The
ideal vertex A2 ∈ k, l.

66



KoG•25–2021 A. Yahya, J. Szirmai: Visualization of Sphere and Horosphere Packings Related to Coxeter Tilings......

Figure 4: Truncated orthoscheme, where the truncating
face is A2A4A5

4 On sphere packings

In constructing the insphere, the largest inscribed classical
sphere, in the truncated orthoscheme, we followed in [24]
the procedure of [8] by bisector hyperplane.

The visualization of the optimum insphere in truncated or-
thoscheme (∞,3,3,∞) is given in Fig. 5. The problem may
occur if the insphere intersect the truncating hyperplanes a3

(see Fig 6).

The complete packings densities of insphere packings (and
their optimum density) can be found in [24], that gave the
optimum packing density ≈ 0.2623649, attained by sphere
packing in (∞,3,3,∞), small enough, not relevant, related
to [17].

Figure 5: Optimum insphere in the truncated orthoscheme
(∞,3,3,∞)

Figure 6: The insphere intersects the truncating polar plane
a3 of vertex A3

5 On horosphere packings

A horosphere in hyperbolic geometry is the surface orthog-
onal to the set of parallel lines, passing through the same
ideal point on the absolute quadratic surface (simply abso-
lute) ∂Hn (at present n = 3).

We introduce Cartesian homogeneous projective coordinate
system using vector basis ei (i = 0,1,2,3) for P 3 where the
coordinate centre of the model is O = (1,0,0,0) = e0. We
pick an arbitrary point at infinity A2 = (1,0,0,1).

As it is known, the equation of a horosphere with centre
A2 = (1,0,0,1) through point S = (1,0,0,s) (s ∈ (−1,1))
is

(s−1)2

1− s2 (−x0x0 + x1x1 + x2x2 + x3x3)+(x0− x3)
2
= 0

This surface can be described in the usual Cartesian coordi-
nate system by the formula

2(x2 + y2)

1− s
+

4(z− ( s+1
2 ))2

(1− s)2 = 1, (4)

where x = x1

x0 , y = x2

x0 , z = x3

x0 .

In computer visualization, it is very powerful to convert the
horosphere equation into a polar coordinate system. We use
the following conversion

x =

√
1− s

2
cosθsinφ, y =

√
1− s

2
sinθsinφ,

z =
1+ s

2
+

1− s
2

cosφ, (5)

where parameters θ ∈ [0,2π), φ ∈ [0,π].
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We will apply the previous truncated orthoscheme (based
on the set of unit normal Napier cycles) in [7, 24] as before.

We separate our discussion into two cases depending on
the number of vertices lying at infinity A0, A2 or both. We
can also attach two horospheres altogether, where they are
touching each other on edge A0A2.

5.1 Packings with one horosphere

We have some truncated orthoschemes given with Schläfli
symbols such that it has only one point at the in-
finity: (∞,3,3,∞), (∞,3,4,∞), (∞,3,5,∞), (∞,4,3,∞),
(∞,5,3,∞). However, if the truncated orthoscheme has
two ideal vertices of truncated orthoscheme we can also
study the corresponding horosphere packing centred at one
either of these vertices.

It is clear that the densest horoshpere packing configuration
would be reached whenever this horosphere (horoball) with
centre A2 touch the opposite face (represented by hyper-
plane b2). One could simply take the projection of A2 into
b2 by the projection formula a2 7−→ ap

2 = a2−〈a2,b2〉b2.
The optimal horosphere should contain the point Ap

2 there-
fore we can determine the parameter s and so the actual
equation (4) of the horosphere.

We provide the computer visualization of optimum horo-
spheres packing, attained by truncated orthoscheme tilings
with Schläfli symbols (∞,3,3,∞), in Fig. 7-9. The optimum
packing density is ≈ 0.8188080, see [24].

Figure 7: The largest horoball related to truncated or-
thoscheme of tiling (∞,3,3,∞)

Figure 8: The neighbouring turncated orthoschemes to
horosphere configuration (first crown) to tiling
(∞,3,3,∞)

Figure 9: The first to third crowns of neighbouring horo-
sphere configurations to tiling (∞,3,3,∞)

5.2 Packing with two horospheres

Now, we focus on the orthoscheme tiling with the Schläfli
symbols (∞,3,6,∞), (∞,4,4,∞), and (∞,6,3,∞).

Figure 10: Two horospheres, B0 and B2, that touch each
other at a point lying on edge A0A2
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Remark 1 : These two horospheres could not intersect the
opposite faces b0 and b2, therefore there will be a restric-
tion for the movement of the point of tangency along edge
A2A0.

We can parameterize the possible movement of the
point of tangency P along edge A2A0, see Fig. 10, e.g.
P(r(t)) = (1− t)a2 + t ·a0. Then, for every possible t, we
have parameters si (i = 1,2) related to both horospheres.

Optimal horoball packing of tiling (∞,4,4,∞)

In this situation, we have quite interesting structure, we
obtain that the possible parameter of t lies in [≈ 0.2150 <
t <≈ 0.3497]. We can compute the volumes of horoball
sectors as the functions of t. It is analogous to the previous
case, the volume function of horoball sectors centred at
A2 is a monotonic increasing function of t if the point of
tangency moving with direction to A0 while the volume
function of horoball sectors centred at A0 is decreasing in
this situation.

In this case, we proved (in [24]) that the density was in-
creasing as a function of t, see Fig. 11. Furthermore, the
maximum density δopt ≈ 0.8188081 is attained when t is
largest, i.e when the horosphere centred at A2 touches the
opposite face b2.

Figure 11: The plot of density function for all possible t in
case (∞,4,4,∞)

Optimal horoball packing of tilings (∞,3,6,∞) and
(∞,6,3,∞)

We similarly visualize the densest horosphere (horoball)
packings to the truncated orthoscheme tilings with Schläfli
symbol (∞,3,6,∞) and (∞,6,3,∞).

Figure 12: Two horospheres, B0 and B2, that touch each
other at the point lying on A0A2 related to tiling
(∞,3,6,∞).

Figure 13: Adjacent orthoschemes and the corresponding
horosphere configuration (first crown) to trun-
cated orthoscheme tiling(∞,3,6,∞)

Figure 14: The horosphere configuration (first crown) related
to tiling (∞,3,6,∞)
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Figure 15: The optimum packing density horospheres con-
figuration (first-third crown) to the orthoscheme
tiling (∞,3,6,∞) with density 0.8413392.

There are some basic facts for these (dual) orthoschemes.

1. In these symmetric dual situations, there is only one
possible value of parameter t in each case, t(3,6) ≈
0.2119416, t(6,3), ≈ 0.5745582.

2. If (q,r) = (3,6) then the optimal horosphere B2
touches the plane b2 and B0 touches the face b0 and if
(q,r) = (6,3) B2 touches the plane b2 and B0 touches
the polar face a3.

3. The packing density of these two configurations are
the same, ≈ 0.8413392, see [24].

Finally, we give the computer visualization in Fig. 12-15
related to Coxeter tiling (∞,3,6,∞) and in Fig. 16-19 for
Coxeter tiling (∞,6,3,∞).

In our opinion, non-Euclidean tilings and packings and their
investigations will play an important role in the research of
material structure in the near future, thus visualization of
them is also important to know them better.

Figure 16: Two horospheres, B0 and B2, that touch each
other at a point on edge A0A2 related to tiling
(∞,6,3,∞).

Figure 17: The horosphere configuration (first crown) to trun-
cated orthoscheme tiling (∞,6,3,∞)

Figure 18: The optimum packing density horosphere con-
figuration (first-second crown) related to the or-
thoscheme tiling (∞,6,3,∞).

Figure 19: The optimum packing density horosphere configu-
ration (first-third crown) to the orthoscheme tiling
(∞,6,3,∞).
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