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ABSTRACT

The metric in the quasi-hyperbolic plane is induced by
an absolute figure FQH = {F, f1, f2}, consisting of two real
lines f1 and f2 incident with the real point F. A curve of
class n is circular in the quasi-hyperbolic plane if it con-
tains at least one absolute line.
The curves of the 3rd class can be obtained by projec-
tive mapping, i.e. obtained by projectively linked pencil of
curves of the 2nd class and range of points. In this article
we show that the circular curves of the 3rd class of all
types, depending on their position to the absolute figure,
can be constructed with projective mapping.
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Cirkularne krivulje 3. razreda u kvazihiperboličnoj
ravnini dobivene projektivnim preslikavanjem

SAŽETAK

U kvazihiperboličnoj ravnini metrika je inducirana s apso-

lutnom figurom FQH = {F, f1, f2} koja se sastoji od dva

realna pravca f1 i f2 sa sjecǐstem u realnoj točki F. Za

krivulju razreda n kažemo da je cirkularna u kvazihiper-

boličnoj ravnini ako sadrži barem jedan apsolutni pravac.

Krivulje 3. razreda se mogu dobiti projektivnim pridruži-

vanjem izmed-u pramena krivulja 2. razreda i niza točaka.

U ovom ćemo članku pokazati kako se svi tipovi cirku-

larnih krivulja 3. razreda mogu konstruirati projektivnim

preslikavanjem.

Ključne riječi: projektivitet, cirkularna krivulja 3. razreda,

kvazihiperbolična ravnina

1 Introduction

In the 19th century F. Klein founded the basis of the mod-
ern approach to geometry by defining it as the study of
the properties of a space which are invariant under a given
group of transformations. Later on this was know as Erlan-
gen program according to the fact that Klein gave his first
lecture on this subject at the University of Erlangen, [5].
There exist nine plane geometries with projective metric on
a line and on a pencil of lines which can be parabolic, hy-
perbolic or elliptic. Due to Cayley’s influence on Klein the
geometries are denoted as Cayley-Klein projective metrics.
Furthermore, each of these projective metrics can be em-
bedded in the projective plane P2 = {P ,L ,I} where then
an absolute figure, given as a proper or singular conic, in-
duces the metric in the plane, [6, 7, 13] (for n-dimension
see [12]).

The quasi-hyperbolic plane, denoted as QH2, is a projec-
tive plane where the metric is induced by the absolute fig-
ure FQH = {F, f1, f2} consisting of a pair of real lines f1,

f2 intersecting at a real point F , [8, 10, 13]. The point F
is called the absolute point and lines f1, f2 are called the
absolute lines. In the Cayley-Klein model of the quasi-
hyperbolic plane only the geometric objects inside of one
projective angle between absolute lines are observed, while
the points, lines and line segments inside the other angle
are omitted. We observe the projectively extended quasi-
hyperbolic plane where all points and lines of the projec-
tive plane are included as in [10].

In the sense of the Erlangen program, for the fundamental
group of transformations in QH2 we use the 4-parameter
general quasi-hyperbolic group of similarities G4, [8].
Transformations are of the form

[u0,u1,u2] 7→ [α0u0,α1u0 +α2u1 +α3u2,α4u0±α3u1±α2u2],

αi ∈ R, i = {0 . . .4}, ±α
2
2±α

2
3 6= 0,

whereby the absolute figure FQH is determined by

F = (1,0,0), f1 = [0,1,1], f2 = [0,−1,1].
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Definition 1 A line passing through the absolute point F
is called isotropic line and a point incident with the abso-
lute line f1 or f2 is called isotropic point.

For some further results on the basic notions in QH2 see
[10].

Definition 2 If the intersection of the curve ζ of the class
n and the pencil (F), in QH2, is the absolute line f1 with
the intersection multiplicity t and the absolute line f2 with
the intersection multiplicity r, than ζ is said to be a (t+r)-
circular curve or circular curve of type (t,r). t + r is the
degree of circularity, and if t + r = n then the curve ζ is
entirely circular.

In further classification we will not distinguish circular
curve of the type (t,r) from the one of the type (r, t) since
the possibility of constructing one of them implies the pos-
sibility of constructing the other.

In accordance to the group G4, proper curves of the 2nd
class in QH2 are classified into nine types, see [1, 10].
They can also be classified in accordance to its degree and
type of circularity as following:

i) non-circular curves of the 2nd class: ellipses (e), hy-
perbolas (h1,h2,h3), parabolas (p);

ii) 1-circular curves of the 2nd class: special hyperbo-
las (hs1,hs2, type of circularity (1,0));

iii) 2-circular curves of the 2nd class: circles (c, type
of circularity (1,1)), special parabolas (ps, type of
circularity (2,0)).
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Figure 1: Classification of the curves of the 2nd class in
QH2 according to their degree of circularity

Remark 1 In all figures of the article the class curves are
drawn as point objects as we are used to, although they are
line envelopes in the quasi-hyperbolic plane.

The circular curves of the 3rd class can be classified, ac-
cording to their position with respect to FQH, into the fol-
lowing types and subtypes:

• 1-circular curves of the 3rd class

– type of circularity (1,0)
a) the curve contains the absolute line f1

and two isotropic lines that are conjugate
imaginary;

b) the curve contains the absolute line f1 and
two isotropic lines that are real and dis-
tinct;

c) the curve contains the absolute line f1 and
two isotropic lines that coincide;

d) the curve contains the absolute line f1 and
an isotropic double line with two con-
jugate imaginary tangent points (isolated
double line);

e) the curve contains the absolute line f1
and an isotropic double line with two real
and distinct tangent points (double tangent
line);

f) the curve contains the absolute line f1 and
an isotropic double line with two tangent
points that coincide (inflection line);
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Figure 2: Classification of the 1-circular curves of the 3rd
class in QH2
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• 2-circular of the 3rd class

– type of circularity (1,1)

a) the curve contains both absolute lines f1
and f2;

– type of circularity (2,0)

b) the curve contains the absolute line f1
where the absolute point F is the tangent
point;

c) the absolute line f1 is an isolated double
line of the curve;

d) the absolute line f1 is a double tangent line
of the curve;

e) the absolute line f1 is an inflection line of
the curve;
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Figure 3: Classification of the 2-circular curves of the 3rd
class in QH2

• 3-circular curves of the 3rd class

– type of circularity (2,1)

a) the curve contains both absolute lines f1,
f2 and the absolute point F is the tangent
point of the line f1;

b) the curve contains both absolute lines f1,
f2 such that f1 is an isolated double line;

c) the curve contains both absolute lines f1,
f2 such that f1 is a double tangent line

d) the curve contains both absolute lines f1,
f2 such that f1 is an inflection line;

– type of circularity (3,0)

e) the absolute line f1 is a double tangent
with one tangent point at the absolute
point F ;

f) the absolute line f1 is an inflection line
with the tangent point at the absolute point
F ;

g) the curve contains the absolute line f1 and
has a cusp at the absolute point F .
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Figure 4: Classification of the 3-circular or entirely circular
curves of the 3rd class in QH2

The aim of this article is to construct every type of circu-
lar curves of the 3rd class in the quasi-hyperbolic plane
by using projective mapping. The classification of cir-
cular curves, according to their position with respect to
the absolute figure, obtained by projective mapping in
some other Cayley-Klein projective metrics can be found
in [2, 3, 4, 11].
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2 Projective mapping

Let points P1, P2 and curves of the 2nd class ζ1, ζ2 be
given. The associated symmetric bilinear form for the 2nd
class curves is given with

ζ1 . . . fζ1(u,v) := uTC1v = 0,

ζ2 . . . fζ2(u,v) := uTC2v = 0,

and in the following the the curves ζ1 and ζ2 will be iden-
tified with its corresponding matrix representation C1 and
C2. The result of a projective mapping

π : [C1,C2] 7→ [P1,P2],

π(C1 +λC2) = P1 +λP2, ∀λ ∈ R∪∞,

between the pencil of the 2nd class curves [C1,C2] and the
range of points [P1,P2] is a curve of the 3rd class k3

π given
by the equation

k3
π . . . F(u)≡ uTC1u ·PT

2 u−uTC2u ·PT
1 u = 0. (1)

The curve k3
π contains the following nine lines: four basic

lines of the pencil [C1,C2], basic line of the range [P1,P2],
two intersection lines of ζ1 and (P1), two intersection lines
of ζ2 and (P2). It is known that the number of lines re-
quired for determination of a curve of the 3rd class is nine,
but nine lines do not determine a single curve of the 3rd
class in every case, [9]. For defining the projectivity we
need three pairs of elements (ζ1,P1), (ζ2,P2) and (ζ3,P3).
Furthermore, we should point out that although the propor-
tional matrices C1, C2, P1, P2 and αC1, βC2, γP1, δP2 rep-
resent the same two curves of the 2nd class and two points,
the corresponding curves of the 3rd class are different, but
they properties of circularity stay the same.

Let us observe a line v ∈ k3
π, such that the curve k3

π is ob-
tained by a projective mapping π and without loss of gen-
erality we can assume v ∈C1, P1 ∈ v thus

vTC1v = 0, PT
1 v = 0

is valid. The behaviour of the line v can be studied by ob-
serving the intersection lines of curve k3

π and a pencil (X)
such that X ∈ v. Therefore an arbitrary point X on the line
v can be given as

X . . . v+ tw, t ∈ R∪∞,

hence intersection lines of k3
π and (X) are determined by

the roots of the following polynomial

F(v+ tw) = F1(v,w)+ t2F2(v,w)+ t3F3(v,w), (2)

where

F1(v,w) = 2PT
2 v ·vTC1w−PT

1 w ·vTC2v,

F2(v,w) = PT
2 v ·wTC1w+2PT

2 w ·vTC1w−2PT
1 w ·vTC2w,

F3(v,w) = PT
2 w ·wTC1w−PT

1 w ·wTC2w.

From (2) we can conclude the following statements:

• tangent point on the regular line v of the curve k3
π is

given by the equation
F1(v,w) = 0; (3)

• necessary condition to gain v as a double line of the
curve k3

π is
F1(v,w) = 0, ∀w; (4)

• tangent points on a double line v of the curve k3
π are

given by the equation
F2(v,w) = 0; (5)

• necessary condition to gain a cusp at X on the line
v for the curve k3

π is if the equation (5) is valid for
every line w such that X ∈ w.

Remark 2 Generally there are three possible positions for
a curve of the 2nd class ζ1 and its line v:

a) the curve ζ1 is a proper curve and the equation
vTC1w = 0 is its the tangent point on the line v;

b) the curve ζ1 is a singular curve, but v is not its sin-
gular line, i. e. ζ1 = (Z1)∪ (Ẑ1), Z1 ∈ v, Ẑ1 /∈ v. The
point Z1 is the tangent point at v and its equation is
vTC1w = 0;

c) the curve ζ1 is a singular curve and v is its singular
line, i. e. ζ1 = (Z1)∪ (Ẑ1), Z1, Ẑ1 ∈ v. The equation
vTC1w = 0 is valid for every line w.
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Figure 5: Positions of the 2nd class curve ζ1 and its line v

Furthermore, in respect to the basic elements of the map-
ping π there are four different positions for a line v of the
curve k3

π such that v ∈ ζ1, P1 ∈ v:

11



KoG•20–2016 H. Halas, E. Jurkin: 3rd Class Circular Curves in Quasi-Hyperbolic Plane. . .

• v /∈ ζ2, P2 /∈ v;

• v ∈ ζ2, P2 /∈ v;

• v /∈ ζ2, P2 ∈ v;

• v ∈ ζ2, P2 ∈ v.

Taking in consideration the remark 2 we could discuss all
these cases, but in the next section we will present only
some of them. By selecting different corresponding pairs
(ζ1,P1), (ζ2,P2) of the projective mapping π we can obtain
circular curves of the same type. Therefore, for every type
we will present one construction.

Figure 6 represents an example of the entirely circular
curve of the 3rd class obtained by the projective mapping π

where the corresponding pairs of the mapping are (ζ1,P1),
(ζ2,P2), (ζ3,P3), such that curves ζ1 = (Z1)∪ (Ẑ1) and
ζ2 = (Z2)∪ (Ẑ2) are singular. The red curve is obtained
as a set of tangent points of the curve k3

π calculated in the
software Wolfram Mathematica, and the figure is drawn in
dynamic software Geometer’s Sketchpad. As mentioned
earlier in Remark 1 it is customary to represent curves as
point objects, therefore on the remaining figures in the ar-
ticle curves will be presented in this way.
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Figure 6: Circular curve of the 3rd class with the circularity
type (2,1) in QH2

3 1-circular curves of the 3rd class in QH2

From the equation (1), as we already mentioned, the curve
k3

π obtained by projective mapping π : [C1,C2] 7→ [P1,P2]
contains nine specific lines, therefore only by picking cer-
tain pencils of the 2nd class curves or ranges of points we

can ensure the circularity of the curve k3
π. For instance, if

one basic line of the pencils of the 2nd class curves or the
basic line of the point range is the absolute line f1 then the
obtained curve k3

π is 1-circular curve of type (1,0).

Let us observe the case v ∈ ζ1, P1 ∈ v, v /∈ ζ2, P2 /∈ v when
the curve ζ1 is a proper curve of the 2nd class. From the
equation (3) we can conclude that if P1 is the tangent point
of the curve ζ1 then P1 is also a tangent point of the curve
k3

π.

Theorem 1 Let [C1,C2] be a pencil of 2nd class curves
and [P1,P2] a range of isotropic points in QH2. The result
of the projective mapping π : [C1,C2] 7→ [P1,P2] gives a 1-
circular curve of the 3rd class k3

π of type (1,0) or (0,1). If
the curve of the 2nd class corresponding to the absolute
point F is an ellipse, hyperbola or parabola then the re-
maining two isotropic lines of k3

π are conjugate imaginary,
real and distinct or coincide respectively.
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Figure 7: 1-circular curves of the 3rd class of type a, b
and c

Let us observe the case v ∈ ζ1,ζ2, P1 ∈ v, P2 /∈ v when the
curve ζ1 is a singular curve of the 2nd class with a singular
line v, ζ1 = (Z1)∪ (Ẑ1), Z1, Ẑ1 ∈ v. The curves of the pen-
cil [C1,C2] are touching at some point on the line v and the
condition (4) is fulfilled, hence the line v is a double line
of the curve k3

π. The tangent points of the double line are
given with the equation (5).

Theorem 2 Let [C1,C2] be a pencil of 2nd class curves
with a common tangent point on the isotropic line v,
[P1,P2] a range of isotropic points on the absolute line
f1 and the curve k3

π the result of the projective mapping
π : [C1,C2] 7→ [P1,P2] in QH2. If the absolute point F is the
corresponding point to the singular 2nd class curve with
the singular line v, then the curve k3

π is a 1-circular curve
of the 3rd class of type (1,0) with the double line v.
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Figure 8: 1-circular curves of the 3rd class of type d and e

Let us observe the case P1,P2 ∈ v, v ∈ ζ1,ζ2. The condi-
tion (4) is fulfilled, thus the line v is the double line of k3

π.
Tangent points on the line v are given with the equation (5)
which in this case is

PT
2 w ·vTC1w−PT

1 w ·vTC2w = 0. (6)

One tangent point at the line v of the curve k3
π coincides

with the tangent point of the curve ζ1 if and only if P1 is
the tangent point of ζ1 or curve ζ1 and ζ2 are touching.

If the latter case, if the curves ζ1,ζ2 are touching then the
whole pencil [C1,C2] has a common tangent point on the
line v. Furthermore, there exists a singular 2nd class curve
with the singular line v and with out loss of generality we
can assume it is the curve ζ1. The equation (6) is of the
form

PT
1 w ·vTC2w = 0,

hence one tangent point on the line v of the curve k3
π is

the common tangent point of [C1,C2] while the other one
is the point of the range that corresponds to the singular
2nd class curve of [C1,C2] with the singular v. These two
tangent points can coincide and in that case the line v is an
inflection line of the curve k3

π.

Theorem 3 Let [C1,C2] be a pencil of special hyperbolas
of type (1,0) with a common tangent point on the isotropic
line v, [P1,P2] a range of points on v and the curve k3

π the
result of the projective mapping π : [C1,C2] 7→ [P1,P2] in
QH2. If the corresponding point to the singular 2nd class
curve with the singular line v is the common tangent point
of the pencil [C1,C2], then the curve k3

π is 1-circular curve
of type (1,0) with the inflection line v.
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Figure 9: 1-circular curve of the 3rd class of type f

3.1 2-circular curves of the 3rd class

Theorem 4 Let [C1,C2] be a pencil of circles and [P1,P2]
a range of points in QH2. The result of the projective map-
ping π : [C1,C2] 7→ [P1,P2] gives a 2-circular curve of the
3rd class k3

π of type (1,1).
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Figure 10: 2-circular curve of the 3rd class of type a

If in the case P1 ∈ v, P2 /∈ v, v ∈ ζ1,ζ2 we assume that the
curve ζ1 is a proper curve, then the equation (3) is of the
form

PT
2 v ·vTC1w = 0.

Hence, the conclusion is that the tangent point at the line
v of the curve k3

π coincides with the tangent point of the
curve ζ1. Specially, if the curves of the pencil [C1,C2] are
touching at a point on the line v then this common tangent
point of the pencil [C1,C2] is also the tangent point of the
curve k3

π.

Theorem 5 Let [C1,C2] be a pencil of special parabolas
of type (2,0), [P1,P2] a range of points and the curve k3

π

the result of the projective mapping π : [C1,C2] 7→ [P1,P2]
in QH2. Then the curve k3

π is a 2-circular curve of type
(2,0) where the absolute point F is the tangent point at the
absolute line f1.
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Figure 11: 2-circular curve of the 3rd class of type b

From the observations before Theorem 2 follows also

Theorem 6 Let [C1,C2] be a pencil of special parabolas
of type (2,0), [P1,P2] a range of points and the curve k3

π

the result of the projective mapping π : [C1,C2] 7→ [P1,P2]
in QH2. If the isotropic point of the range [P1,P2] inci-
dent with the absolute line f1 corresponds to the singular
curve with the singular line f1 of the pencil [C1,C2], then
the curve k3

π is a 2-circular curve of the 3rd class of type
(2,0) with the double line f1.
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In this case the double line of the curve k3
π can only be an

isolated double line or a double tangent.
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Figure 12: 2-circular curves of the 3rd class of type c and d

From the observation before Theorem 3 we can ensure that
the double line of the curve k3

π is an inflection line:

Theorem 7 Let [C1,C2] be a pencil of special hyperbola
of type (1,0) with a common tangent point on the absolute
line f1, [P1,P2] a range of isotropic points on the absolute
line f1 and the curve k3

π the result of the projective mapping
π : [C1,C2] 7→ [P1,P2] in QH2. If the corresponding point to
the singular curve with the singular line f1 is the common
tangent point of the pencil [C1,C2], then the curve k3

π is a
circular curve of type (2,0) with the inflection line f1.

Z
2

P
1

Z
2

F

f
1

f
2

k3
p

z
1

P
2

Figure 13: 2-circular curve of the 3rd class of type e

3.2 3-circular curves or entirely circular curves

Generally, we already concluded that if there exists a point
of the range [P1,P2] which is the tangent point of its corre-
sponding curve of the 2nd class in the pencil [C1,C2], then
this point is also a tangent point for k3

π. Thus, the following
theorem is valid:

Theorem 8 Let [C1,C2] be a pencil of the 2nd class curves,
[P1,P2] a range of isotropic points on the absolute line
f1 and the curve k3

π the result of the projective mapping
π : [C1,C2] 7→ [P1,P2] in QH2. If the pencil [C1,C2] con-
tains a special parabola of type (0,2) whose correspond-
ing point is the absolute point F, then the curve k3

π is a
3-circular curve of type (1,2). The absolute point F is the
tangent point at the line f2 of the curve k3

π.
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Figure 14: 1-circular curve of the 3rd class of type a

From the observations before Theorem 3 follows also

Theorem 9 Let [C1,C2] be a pencil of circles, [P1,P2] a
range of isotropic points on the absolute line f1 and the
curve k3

π the result of the projective mapping π : [C1,C2] 7→
[P1,P2] in QH2. Then the curve k3

π is an entirely circular
curve of the circularity type (2,1), where the absolute line
f1 is a double isolated line or a double tangent line.
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Figure 15: 3-circular curves of the 3rd class of type b and c

Theorem 10 Let [C1,C2] be a pencil of circles with a com-
mon tangent point on the absolute line f1, [P1,P2] a range
of isotropic points on the absolute line f1 and the curve k3

π

the result of the projective mapping π : [C1,C2] 7→ [P1,P2]
in QH2. If the corresponding point to the singular 2nd
class curve with the singular line f1 is the common tangent
point, then the curve k3

π is a 3-circular curve of type (2,1),
where the absolute line f1 is a inflection line.
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Figure 16: 3-circular curve of the 3rd class of type d

Theorem 11 Let [C1,C2] be a pencil of special parabolas
of type (2,0), [P1,P2] a range of isotropic points on the ab-
solute line f1 and the curve k3

π the result of the projective
mapping π : [C1,C2] 7→ [P1,P2] in QH2. The curve k3

π is

14
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an entirely circular curve of the 3rd class of the circularity
type (3,0) with the double line f1. The absolute point F is
one tangent point on the double line f1, and the other tan-
gent point is the point of the range [P1,P2] that corresponds
to the singular curve of [C1,C2] with the singular line f1.
Specially, if this latter point coincides with F then line f1
is an inflection line.
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Figure 17: 3-circular curves of the 3rd class of type e and f

From the Theorem 5 and the observation before we can
also conclude

Theorem 12 Let [C1,C2] be a pencil of special parabolas
of type (2,0), [P1,P2] a range of points and the curve k3

π

the result of the projective mapping π : [C1,C2] 7→ [P1,P2]
in QH2. If the corresponding point to the singular curve
whose one pencil is (F) is the isotropic point of [P1,P2]
incident with the line f1, then the curve k3

π is a 3-circular
curve of type (3,0) with a cusp at the point F.
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Figure 18: 3-circular curve of the 3rd class of type g

References

[1] H. HALAS, N. KOVAČEVIĆ, A. SLIEPČEVIĆ, Line
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