# 3rd Class Circular Curves in Quasi-Hyperbolic Plane Obtained by Projective Mapping 

3rd Class Circular Curves in Quasi-Hyperbolic Plane Obtained by Projective Mapping


#### Abstract

The metric in the quasi-hyperbolic plane is induced by an absolute figure $\mathcal{F}_{\mathbb{Q H}}=\left\{F, \mathbf{f}_{\mathbf{1}}, \mathbf{f}_{2}\right\}$, consisting of two real lines $\mathbf{f}_{\mathbf{1}}$ and $\mathbf{f}_{\mathbf{2}}$ incident with the real point $F$. A curve of class $n$ is circular in the quasi-hyperbolic plane if it contains at least one absolute line. The curves of the 3rd class can be obtained by projective mapping, i.e. obtained by projectively linked pencil of curves of the 2nd class and range of points. In this article we show that the circular curves of the 3rd class of all types, depending on their position to the absolute figure, can be constructed with projective mapping.


Key words: projectivity, circular curve of the 3rd class, quasi-hyperbolic plane
MSC2010: 51M15, 51N25

## 1 Introduction

In the 19th century F. Klein founded the basis of the modern approach to geometry by defining it as the study of the properties of a space which are invariant under a given group of transformations. Later on this was know as Erlangen program according to the fact that Klein gave his first lecture on this subject at the University of Erlangen, [5]. There exist nine plane geometries with projective metric on a line and on a pencil of lines which can be parabolic, hyperbolic or elliptic. Due to Cayley's influence on Klein the geometries are denoted as Cayley-Klein projective metrics. Furthermore, each of these projective metrics can be embedded in the projective plane $\mathcal{P}_{2}=\{\mathscr{P}, \mathcal{L}, \mathbf{I}\}$ where then an absolute figure, given as a proper or singular conic, induces the metric in the plane, $[6,7,13]$ (for $n$-dimension see [12]).

The quasi-hyperbolic plane, denoted as $\mathbb{Q H}_{2}$, is a projective plane where the metric is induced by the absolute figure $\mathcal{F}_{\mathbb{Q H}}=\left\{F, \mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}\right\}$ consisting of a pair of real lines $\mathbf{f}_{\mathbf{1}}$,

Cirkularne krivulje 3. razreda u kvazihiperboličnoj ravnini dobivene projektivnim preslikavanjem

## SAŽETAK

U kvazihiperboličnoj ravnini metrika je inducirana s apsolutnom figurom $\mathcal{F}_{\mathbb{Q H}}=\left\{F, \mathbf{f}_{\mathbf{1}}, \mathbf{f}_{2}\right\}$ koja se sastoji od dva realna pravca $\mathbf{f}_{\mathbf{1}}$ i $\mathbf{f}_{\mathbf{2}}$ sa sjecištem u realnoj točki $F$. Za krivulju razreda $n$ kažemo da je cirkularna u kvazihiperboličnoj ravnini ako sadrži barem jedan apsolutni pravac. Krivulje 3. razreda se mogu dobiti projektivnim pridruživanjem između pramena krivulja 2. razreda i niza točaka. U ovom ćemo članku pokazati kako se svi tipovi cirkularnih krivulja 3. razreda mogu konstruirati projektivnim preslikavanjem.

Ključne riječi: projektivitet, cirkularna krivulja 3. razreda, kvazihiperbolična ravnina
$\mathbf{f}_{2}$ intersecting at a real point $F,[8,10,13]$. The point $F$ is called the absolute point and lines $\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}$ are called the absolute lines. In the Cayley-Klein model of the quasihyperbolic plane only the geometric objects inside of one projective angle between absolute lines are observed, while the points, lines and line segments inside the other angle are omitted. We observe the projectively extended quasihyperbolic plane where all points and lines of the projective plane are included as in [10].
In the sense of the Erlangen program, for the fundamental group of transformations in $\mathbb{Q H}_{2}$ we use the 4-parameter general quasi-hyperbolic group of similarities $\mathfrak{G}_{4}$, [8]. Transformations are of the form

$$
\begin{array}{r}
{\left[u_{0}, u_{1}, u_{2}\right] \mapsto\left[\alpha_{0} u_{0}, \alpha_{1} u_{0}+\alpha_{2} u_{1}+\alpha_{3} u_{2}, \alpha_{4} u_{0} \pm \alpha_{3} u_{1} \pm \alpha_{2} u_{2}\right]} \\
\alpha_{i} \in \mathbb{R}, \quad i=\{0 \ldots 4\}, \quad \pm \alpha_{2}^{2} \pm \alpha_{3}^{2} \neq 0
\end{array}
$$

whereby the absolute figure $\mathcal{F}_{\mathbb{Q H}}$ is determined by

$$
F=(1,0,0), \mathbf{f}_{\mathbf{1}}=[0,1,1], \mathbf{f}_{2}=[0,-1,1]
$$

Definition 1 A line passing through the absolute point $F$ is called isotropic line and a point incident with the absolute line $\mathbf{f}_{1}$ or $\mathbf{f}_{\mathbf{2}}$ is called isotropic point.

For some further results on the basic notions in $\mathbb{Q} \mathbb{H}_{2}$ see [10].

Definition 2 If the intersection of the curve $\zeta$ of the class $n$ and the pencil $(F)$, in $\mathbb{Q} H_{2}$, is the absolute line $\mathbf{f}_{\mathbf{1}}$ with the intersection multiplicity $t$ and the absolute line $\mathbf{f}_{2}$ with the intersection multiplicity $r$, than $\zeta$ is said to be a $(t+r)$ circular curve or circular curve of type $(t, r) . t+r$ is the degree of circularity, and if $t+r=n$ then the curve $\zeta$ is entirely circular.

In further classification we will not distinguish circular curve of the type $(t, r)$ from the one of the type $(r, t)$ since the possibility of constructing one of them implies the possibility of constructing the other.
In accordance to the group $\mathfrak{G}_{4}$, proper curves of the 2nd class in $\mathbb{Q} H_{2}$ are classified into nine types, see $[1,10]$. They can also be classified in accordance to its degree and type of circularity as following:
i) non-circular curves of the 2 nd class: ellipses $(e)$, hyperbolas $\left(h_{1}, h_{2}, h_{3}\right)$, parabolas $(p)$;
ii) 1-circular curves of the 2nd class: special hyperbolas $\left(h_{s 1}, h_{s 2}\right.$, type of circularity $\left.(1,0)\right)$;
iii) 2-circular curves of the 2nd class: circles ( $c$, type of circularity $(1,1)$ ), special parabolas $\left(p_{s}\right.$, type of circularity $(2,0))$.


Figure 1: Classification of the curves of the 2nd class in $\mathbb{Q H}_{2}$ according to their degree of circularity

Remark 1 In all figures of the article the class curves are drawn as point objects as we are used to, although they are line envelopes in the quasi-hyperbolic plane.

The circular curves of the 3rd class can be classified, according to their position with respect to $\mathcal{F}_{\mathbb{Q H}}$, into the following types and subtypes:

- 1-circular curves of the 3rd class
- type of circularity $(1,0)$
a) the curve contains the absolute line $\mathbf{f}_{\mathbf{1}}$ and two isotropic lines that are conjugate imaginary;
b) the curve contains the absolute line $\mathbf{f}_{\mathbf{1}}$ and two isotropic lines that are real and distinct;
c) the curve contains the absolute line $\mathbf{f}_{\mathbf{1}}$ and two isotropic lines that coincide;
d) the curve contains the absolute line $\mathbf{f}_{\mathbf{1}}$ and an isotropic double line with two conjugate imaginary tangent points (isolated double line);
e) the curve contains the absolute line $\mathbf{f}_{\mathbf{1}}$ and an isotropic double line with two real and distinct tangent points (double tangent line);
f) the curve contains the absolute line $\mathbf{f}_{\mathbf{1}}$ and an isotropic double line with two tangent points that coincide (inflection line);
a)

> b)


Figure 2: Classification of the 1-circular curves of the 3rd class in $\mathbb{Q H}_{2}$

- 2-circular of the 3rd class
- type of circularity $(1,1)$
a) the curve contains both absolute lines $\mathbf{f}_{\mathbf{1}}$ and $\mathbf{f}_{\mathbf{2}}$;
- type of circularity $(2,0)$
b) the curve contains the absolute line $\mathbf{f}_{\mathbf{1}}$ where the absolute point $F$ is the tangent point;
c) the absolute line $\mathbf{f}_{\mathbf{1}}$ is an isolated double line of the curve;
d) the absolute line $\mathbf{f}_{\mathbf{1}}$ is a double tangent line of the curve;
e) the absolute line $\mathbf{f}_{\mathbf{1}}$ is an inflection line of the curve;


Figure 3: Classification of the 2-circular curves of the 3rd class in $\mathbb{Q H}_{2}$

- 3-circular curves of the 3rd class
- type of circularity $(2,1)$
a) the curve contains both absolute lines $\mathbf{f}_{\mathbf{1}}$, $\mathbf{f}_{2}$ and the absolute point $F$ is the tangent point of the line $\mathbf{f}_{\mathbf{1}}$;
b) the curve contains both absolute lines $\mathbf{f}_{\mathbf{1}}$, $\mathbf{f}_{\mathbf{2}}$ such that $\mathbf{f}_{\mathbf{1}}$ is an isolated double line;
c) the curve contains both absolute lines $\mathbf{f}_{\mathbf{1}}$, $\mathbf{f}_{2}$ such that $\mathbf{f}_{\mathbf{1}}$ is a double tangent line
d) the curve contains both absolute lines $\mathbf{f}_{\mathbf{1}}$, $\mathbf{f}_{\mathbf{2}}$ such that $\mathbf{f}_{\mathbf{1}}$ is an inflection line;
- type of circularity $(3,0)$
e) the absolute line $\mathbf{f}_{\mathbf{1}}$ is a double tangent with one tangent point at the absolute point $F$;
f) the absolute line $\mathbf{f}_{\mathbf{1}}$ is an inflection line with the tangent point at the absolute point $F$;
g) the curve contains the absolute line $\mathbf{f}_{\mathbf{1}}$ and has a cusp at the absolute point $F$.


Figure 4: Classification of the 3-circular or entirely circular curves of the 3rd class in $\mathbb{Q H}_{2}$

The aim of this article is to construct every type of circular curves of the 3rd class in the quasi-hyperbolic plane by using projective mapping. The classification of circular curves, according to their position with respect to the absolute figure, obtained by projective mapping in some other Cayley-Klein projective metrics can be found in $[2,3,4,11]$.

## 2 Projective mapping

Let points $P_{1}, P_{2}$ and curves of the 2 nd class $\zeta_{1}, \zeta_{2}$ be given. The associated symmetric bilinear form for the 2 nd class curves is given with

$$
\begin{array}{ll}
\zeta_{1} \ldots & f_{\zeta_{1}}(\mathbf{u}, \mathbf{v}):=\mathbf{u}^{T} C_{1} \mathbf{v}=0 \\
\zeta_{2} \ldots & f_{\zeta_{2}}(\mathbf{u}, \mathbf{v}):=\mathbf{u}^{T} C_{2} \mathbf{v}=0
\end{array}
$$

and in the following the the curves $\zeta_{1}$ and $\zeta_{2}$ will be identified with its corresponding matrix representation $C_{1}$ and $C_{2}$. The result of a projective mapping

$$
\begin{gathered}
\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right], \\
\pi\left(C_{1}+\lambda C_{2}\right)=P_{1}+\lambda P_{2}, \quad \forall \lambda \in \mathbb{R} \cup \infty,
\end{gathered}
$$

between the pencil of the 2 nd class curves $\left[C_{1}, C_{2}\right]$ and the range of points $\left[P_{1}, P_{2}\right]$ is a curve of the 3 rd class $k_{\pi}^{3}$ given by the equation

$$
\begin{equation*}
k_{\pi}^{3} \ldots F(\mathbf{u}) \equiv \mathbf{u}^{T} C_{1} \mathbf{u} \cdot P_{2}^{T} \mathbf{u}-\mathbf{u}^{T} C_{2} \mathbf{u} \cdot P_{1}^{T} \mathbf{u}=0 \tag{1}
\end{equation*}
$$

The curve $k_{\pi}^{3}$ contains the following nine lines: four basic lines of the pencil $\left[C_{1}, C_{2}\right]$, basic line of the range $\left[P_{1}, P_{2}\right.$ ], two intersection lines of $\zeta_{1}$ and $\left(P_{1}\right)$, two intersection lines of $\zeta_{2}$ and $\left(P_{2}\right)$. It is known that the number of lines required for determination of a curve of the 3 rd class is nine, but nine lines do not determine a single curve of the 3rd class in every case, [9]. For defining the projectivity we need three pairs of elements $\left(\zeta_{1}, P_{1}\right),\left(\zeta_{2}, P_{2}\right)$ and $\left(\zeta_{3}, P_{3}\right)$. Furthermore, we should point out that although the proportional matrices $C_{1}, C_{2}, P_{1}, P_{2}$ and $\alpha C_{1}, \beta C_{2}, \gamma P_{1}, \delta P_{2}$ represent the same two curves of the 2 nd class and two points, the corresponding curves of the 3rd class are different, but they properties of circularity stay the same.

Let us observe a line $\mathbf{v} \in k_{\pi}^{3}$, such that the curve $k_{\pi}^{3}$ is obtained by a projective mapping $\pi$ and without loss of generality we can assume $\mathbf{v} \in C_{1}, P_{1} \in \mathbf{v}$ thus

$$
\mathbf{v}^{T} C_{1} \mathbf{v}=0, P_{1}^{T} \mathbf{v}=0
$$

is valid. The behaviour of the line $\mathbf{v}$ can be studied by observing the intersection lines of curve $k_{\pi}^{3}$ and a pencil $(X)$ such that $X \in \mathbf{v}$. Therefore an arbitrary point $X$ on the line $\mathbf{v}$ can be given as

$$
X \ldots \quad \mathbf{v}+t \mathbf{w}, t \in \mathbb{R} \cup \infty
$$

hence intersection lines of $k_{\pi}^{3}$ and $(X)$ are determined by the roots of the following polynomial

$$
\begin{equation*}
F(\mathbf{v}+t \mathbf{w})=F_{1}(\mathbf{v}, \mathbf{w})+t^{2} F_{2}(\mathbf{v}, \mathbf{w})+t^{3} F_{3}(\mathbf{v}, \mathbf{w}) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}(\mathbf{v}, \mathbf{w})=2 P_{2}^{T} \mathbf{v} \cdot \mathbf{v}^{T} C_{1} \mathbf{w}-P_{1}^{T} \mathbf{w} \cdot \mathbf{v}^{T} C_{2} \mathbf{v} \\
& F_{2}(\mathbf{v}, \mathbf{w})=P_{2}^{T} \mathbf{v} \cdot \mathbf{w}^{T} C_{1} \mathbf{w}+2 P_{2}^{T} \mathbf{w} \cdot \mathbf{v}^{T} C_{1} \mathbf{w}-2 P_{1}^{T} \mathbf{w} \cdot \mathbf{v}^{T} C_{2} \mathbf{w}, \\
& F_{3}(\mathbf{v}, \mathbf{w})=P_{2}^{T} \mathbf{w} \cdot \mathbf{w}^{T} C_{1} \mathbf{w}-P_{1}^{T} \mathbf{w} \cdot \mathbf{w}^{T} C_{2} \mathbf{w} .
\end{aligned}
$$

From (2) we can conclude the following statements:

- tangent point on the regular line $\mathbf{v}$ of the curve $k_{\pi}^{3}$ is given by the equation

$$
\begin{equation*}
F_{1}(\mathbf{v}, \mathbf{w})=0 ; \tag{3}
\end{equation*}
$$

- necessary condition to gain $\mathbf{v}$ as a double line of the curve $k_{\pi}^{3}$ is

$$
\begin{equation*}
F_{1}(\mathbf{v}, \mathbf{w})=0, \quad \forall \mathbf{w} ; \tag{4}
\end{equation*}
$$

- tangent points on a double line $\mathbf{v}$ of the curve $k_{\pi}^{3}$ are given by the equation

$$
\begin{equation*}
F_{2}(\mathbf{v}, \mathbf{w})=0 ; \tag{5}
\end{equation*}
$$

- necessary condition to gain a cusp at $X$ on the line $\mathbf{v}$ for the curve $k_{\pi}^{3}$ is if the equation (5) is valid for every line $\mathbf{w}$ such that $X \in \mathbf{w}$.

Remark 2 Generally there are three possible positions for a curve of the 2 nd class $\zeta_{1}$ and its line $\mathbf{v}$ :
a) the curve $\zeta_{1}$ is a proper curve and the equation $\mathbf{v}^{T} C_{1} \mathbf{w}=0$ is its the tangent point on the line $\mathbf{v}$;
b) the curve $\zeta_{1}$ is a singular curve, but $\mathbf{v}$ is not its singular line, i. e. $\zeta_{1}=\left(Z_{1}\right) \cup\left(\hat{Z}_{1}\right), Z_{1} \in \mathbf{v}, \hat{Z}_{1} \notin \mathbf{v}$. The point $Z_{1}$ is the tangent point at $\mathbf{v}$ and its equation is $\mathbf{v}^{T} C_{1} \mathbf{w}=0$;
c) the curve $\zeta_{1}$ is a singular curve and $\mathbf{v}$ is its singular line, i. e. $\zeta_{1}=\left(Z_{1}\right) \cup\left(\hat{Z}_{1}\right), Z_{1}, \hat{Z}_{1} \in \mathbf{v}$. The equation $\mathbf{v}^{T} C_{1} \mathbf{w}=0$ is valid for every line $\mathbf{w}$.


Figure 5: Positions of the 2 nd class curve $\zeta_{1}$ and its line $\mathbf{v}$

Furthermore, in respect to the basic elements of the mapping $\pi$ there are four different positions for a line $\mathbf{v}$ of the curve $k_{\pi}^{3}$ such that $\mathbf{v} \in \zeta_{1}, P_{1} \in \mathbf{v}$ :

- $\mathbf{v} \notin \zeta_{2}, \quad P_{2} \notin \mathbf{v} ;$
- $\mathbf{v} \in \zeta_{2}, \quad P_{2} \notin \mathbf{v} ;$
- $\mathbf{v} \notin \zeta_{2}, \quad P_{2} \in \mathbf{v} ;$
- $\mathbf{v} \in \zeta_{2}, \quad P_{2} \in \mathbf{v}$.

Taking in consideration the remark 2 we could discuss all these cases, but in the next section we will present only some of them. By selecting different corresponding pairs $\left(\zeta_{1}, P_{1}\right),\left(\zeta_{2}, P_{2}\right)$ of the projective mapping $\pi$ we can obtain circular curves of the same type. Therefore, for every type we will present one construction.
Figure 6 represents an example of the entirely circular curve of the 3rd class obtained by the projective mapping $\pi$ where the corresponding pairs of the mapping are $\left(\zeta_{1}, P_{1}\right)$, $\left(\zeta_{2}, P_{2}\right)$, $\left(\zeta_{3}, P_{3}\right)$, such that curves $\zeta_{1}=\left(Z_{1}\right) \cup\left(\mathcal{Z}_{1}\right)$ and $\zeta_{2}=\left(Z_{2}\right) \cup\left(\hat{Z}_{2}\right)$ are singular. The red curve is obtained as a set of tangent points of the curve $k_{\pi}^{3}$ calculated in the software Wolfram Mathematica, and the figure is drawn in dynamic software Geometer's Sketchpad. As mentioned earlier in Remark 1 it is customary to represent curves as point objects, therefore on the remaining figures in the article curves will be presented in this way.


Figure 6: Circular curve of the 3rd class with the circularity type $(2,1)$ in $\mathbb{Q} H_{2}$

## 3 1-circular curves of the $\mathbf{3 r d}$ class in $\mathbb{Q} \mathrm{H}_{2}$

From the equation (1), as we already mentioned, the curve $k_{\pi}^{3}$ obtained by projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ contains nine specific lines, therefore only by picking certain pencils of the 2 nd class curves or ranges of points we
can ensure the circularity of the curve $k_{\pi}^{3}$. For instance, if one basic line of the pencils of the 2 nd class curves or the basic line of the point range is the absolute line $\mathbf{f}_{\mathbf{1}}$ then the obtained curve $k_{\pi}^{3}$ is 1 -circular curve of type $(1,0)$.
Let us observe the case $\mathbf{v} \in \zeta_{1}, P_{1} \in \mathbf{v}, \mathbf{v} \notin \zeta_{2}, P_{2} \notin \mathbf{v}$ when the curve $\zeta_{1}$ is a proper curve of the 2 nd class. From the equation (3) we can conclude that if $P_{1}$ is the tangent point of the curve $\zeta_{1}$ then $P_{1}$ is also a tangent point of the curve $k_{\pi}^{3}$.

Theorem 1 Let $\left[C_{1}, C_{2}\right]$ be a pencil of 2 nd class curves and $\left[P_{1}, P_{2}\right]$ a range of isotropic points in $\mathbb{Q} H_{2}$. The result of the projective mapping $\pi$ : $\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ gives a 1 circular curve of the 3 rd class $k_{\pi}^{3}$ of type $(1,0)$ or $(0,1)$. If the curve of the 2nd class corresponding to the absolute point $F$ is an ellipse, hyperbola or parabola then the remaining two isotropic lines of $k_{\pi}^{3}$ are conjugate imaginary, real and distinct or coincide respectively.


Figure 7: 1-circular curves of the 3 rd class of type $a, b$ and $c$
Let us observe the case $\mathbf{v} \in \zeta_{1}, \zeta_{2}, P_{1} \in \mathbf{v}, P_{2} \notin \mathbf{v}$ when the curve $\zeta_{1}$ is a singular curve of the 2nd class with a singular line $\mathbf{v}, \zeta_{1}=\left(Z_{1}\right) \cup\left(\hat{Z}_{1}\right), Z_{1}, \hat{Z_{1}} \in \mathbf{v}$. The curves of the pencil $\left[C_{1}, C_{2}\right]$ are touching at some point on the line $\mathbf{v}$ and the condition (4) is fulfilled, hence the line $\mathbf{v}$ is a double line of the curve $k_{\pi}^{3}$. The tangent points of the double line are given with the equation (5).

Theorem 2 Let $\left[C_{1}, C_{2}\right]$ be a pencil of $2 n d$ class curves with a common tangent point on the isotropic line $\mathbf{v}$, $\left[P_{1}, P_{2}\right]$ a range of isotropic points on the absolute line $\mathbf{f}_{1}$ and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q} \mathbb{H}_{2}$. If the absolute point $F$ is the corresponding point to the singular 2nd class curve with the singular line $\mathbf{v}$, then the curve $k_{\pi}^{3}$ is a 1-circular curve of the 3 rd class of type $(1,0)$ with the double line $\mathbf{v}$.


Figure 8: 1-circular curves of the 3 rd class of type $d$ and $e$
Let us observe the case $P_{1}, P_{2} \in \mathbf{v}, \mathbf{v} \in \zeta_{1}, \zeta_{2}$. The condition (4) is fulfilled, thus the line $\mathbf{v}$ is the double line of $k_{\pi}^{3}$. Tangent points on the line $\mathbf{v}$ are given with the equation (5) which in this case is

$$
\begin{equation*}
P_{2}^{T} \mathbf{w} \cdot \mathbf{v}^{T} C_{1} \mathbf{w}-P_{1}^{T} \mathbf{w} \cdot \mathbf{v}^{T} C_{2} \mathbf{w}=0 \tag{6}
\end{equation*}
$$

One tangent point at the line $\mathbf{v}$ of the curve $k_{\pi}^{3}$ coincides with the tangent point of the curve $\zeta_{1}$ if and only if $P_{1}$ is the tangent point of $\zeta_{1}$ or curve $\zeta_{1}$ and $\zeta_{2}$ are touching.
If the latter case, if the curves $\zeta_{1}, \zeta_{2}$ are touching then the whole pencil $\left[C_{1}, C_{2}\right]$ has a common tangent point on the line $\mathbf{v}$. Furthermore, there exists a singular 2nd class curve with the singular line $\mathbf{v}$ and with out loss of generality we can assume it is the curve $\zeta_{1}$. The equation (6) is of the form

$$
P_{1}^{T} \mathbf{w} \cdot \mathbf{v}^{T} C_{2} \mathbf{w}=0
$$

hence one tangent point on the line $\mathbf{v}$ of the curve $k_{\pi}^{3}$ is the common tangent point of $\left[C_{1}, C_{2}\right]$ while the other one is the point of the range that corresponds to the singular 2nd class curve of $\left[C_{1}, C_{2}\right]$ with the singular $\mathbf{v}$. These two tangent points can coincide and in that case the line $\mathbf{v}$ is an inflection line of the curve $k_{\pi}^{3}$.

Theorem 3 Let $\left[C_{1}, C_{2}\right]$ be a pencil of special hyperbolas of type $(1,0)$ with a common tangent point on the isotropic line $\mathbf{v},\left[P_{1}, P_{2}\right]$ a range of points on $\mathbf{v}$ and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q H}_{2}$. If the corresponding point to the singular 2 nd class curve with the singular line $\mathbf{v}$ is the common tangent point of the pencil $\left[C_{1}, C_{2}\right]$, then the curve $k_{\pi}^{3}$ is 1-circular curve of type (1,0) with the inflection line $\mathbf{v}$.


Figure 9: 1-circular curve of the 3rd class of type $f$

### 3.1 2-circular curves of the 3 rd class

Theorem 4 Let $\left[C_{1}, C_{2}\right]$ be a pencil of circles and $\left[P_{1}, P_{2}\right]$ a range of points in $\mathbb{Q H}_{2}$. The result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ gives a 2 -circular curve of the 3 rd class $k_{\pi}^{3}$ of type $(1,1)$.


Figure 10: 2-circular curve of the 3rd class of type a
If in the case $P_{1} \in \mathbf{v}, P_{2} \notin \mathbf{v}, \mathbf{v} \in \zeta_{1}, \zeta_{2}$ we assume that the curve $\zeta_{1}$ is a proper curve, then the equation (3) is of the form

$$
P_{2}^{T} \mathbf{v} \cdot \mathbf{v}^{T} C_{1} \mathbf{w}=0
$$

Hence, the conclusion is that the tangent point at the line $\mathbf{v}$ of the curve $k_{\pi}^{3}$ coincides with the tangent point of the curve $\zeta_{1}$. Specially, if the curves of the pencil $\left[C_{1}, C_{2}\right]$ are touching at a point on the line $\mathbf{v}$ then this common tangent point of the pencil $\left[C_{1}, C_{2}\right]$ is also the tangent point of the curve $k_{\pi}^{3}$.

Theorem 5 Let $\left[C_{1}, C_{2}\right]$ be a pencil of special parabolas of type $(2,0),\left[P_{1}, P_{2}\right]$ a range of points and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q H}_{2}$. Then the curve $k_{\pi}^{3}$ is a 2 -circular curve of type $(2,0)$ where the absolute point $F$ is the tangent point at the absolute line $\mathbf{f}_{\mathbf{1}}$.


Figure 11: 2-circular curve of the 3 rd class of type $b$
From the observations before Theorem 2 follows also
Theorem 6 Let $\left[C_{1}, C_{2}\right]$ be a pencil of special parabolas of type $(2,0),\left[P_{1}, P_{2}\right]$ a range of points and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q} H_{2}$. If the isotropic point of the range $\left[P_{1}, P_{2}\right]$ incident with the absolute line $\mathbf{f}_{\mathbf{1}}$ corresponds to the singular curve with the singular line $\mathbf{f}_{\mathbf{1}}$ of the pencil $\left[C_{1}, C_{2}\right]$, then the curve $k_{\pi}^{3}$ is a 2-circular curve of the 3 rd class of type $(2,0)$ with the double line $\mathbf{f}_{\mathbf{1}}$.

In this case the double line of the curve $k_{\pi}^{3}$ can only be an isolated double line or a double tangent.


Figure 12: 2-circular curves of the 3 rd class of type $c$ and $d$
From the observation before Theorem 3 we can ensure that the double line of the curve $k_{\pi}^{3}$ is an inflection line:

Theorem 7 Let $\left[C_{1}, C_{2}\right]$ be a pencil of special hyperbola of type $(1,0)$ with a common tangent point on the absolute line $\mathbf{f}_{\mathbf{1}},\left[P_{1}, P_{2}\right]$ a range of isotropic points on the absolute line $\mathbf{f}_{1}$ and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q} H_{2}$. If the corresponding point to the singular curve with the singular line $\mathbf{f}_{\mathbf{1}}$ is the common tangent point of the pencil $\left[C_{1}, C_{2}\right]$, then the curve $k_{\pi}^{3}$ is a circular curve of type $(2,0)$ with the inflection line $\mathbf{f}_{\mathbf{1}}$.


Figure 13: 2-circular curve of the 3rd class of type e

### 3.2 3-circular curves or entirely circular curves

Generally, we already concluded that if there exists a point of the range $\left[P_{1}, P_{2}\right]$ which is the tangent point of its corresponding curve of the 2 nd class in the pencil $\left[C_{1}, C_{2}\right]$, then this point is also a tangent point for $k_{\pi}^{3}$. Thus, the following theorem is valid:

Theorem 8 Let $\left[C_{1}, C_{2}\right]$ be a pencil of the 2 nd class curves, $\left[P_{1}, P_{2}\right]$ a range of isotropic points on the absolute line $\mathbf{f}_{1}$ and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q} H_{2}$. If the pencil $\left[C_{1}, C_{2}\right]$ contains a special parabola of type $(0,2)$ whose corresponding point is the absolute point $F$, then the curve $k_{\pi}^{3}$ is a 3 -circular curve of type $(1,2)$. The absolute point $F$ is the tangent point at the line $\mathbf{f}_{2}$ of the curve $k_{\pi}^{3}$.


Figure 14: 1-circular curve of the 3rd class of type a From the observations before Theorem 3 follows also

Theorem 9 Let $\left[C_{1}, C_{2}\right]$ be a pencil of circles, $\left[P_{1}, P_{2}\right]$ a range of isotropic points on the absolute line $\mathbf{f}_{1}$ and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto$ $\left[P_{1}, P_{2}\right]$ in $\mathbb{Q} H_{2}$. Then the curve $k_{\pi}^{3}$ is an entirely circular curve of the circularity type $(2,1)$, where the absolute line $\mathbf{f}_{\mathbf{1}}$ is a double isolated line or a double tangent line.


Figure 15: 3-circular curves of the 3rd class of type $b$ and $c$
Theorem 10 Let $\left[C_{1}, C_{2}\right]$ be a pencil of circles with a common tangent point on the absolute line $\mathbf{f}_{\mathbf{1}},\left[P_{1}, P_{2}\right]$ a range of isotropic points on the absolute line $\mathbf{f}_{\mathbf{1}}$ and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q H}_{2}$. If the corresponding point to the singular $2 n d$ class curve with the singular line $\mathbf{f}_{\mathbf{1}}$ is the common tangent point, then the curve $k_{\pi}^{3}$ is a 3-circular curve of type $(2,1)$, where the absolute line $\mathbf{f}_{\mathbf{1}}$ is a inflection line.


Figure 16: 3-circular curve of the 3rd class of type d
Theorem 11 Let $\left[C_{1}, C_{2}\right]$ be a pencil of special parabolas of type $(2,0),\left[P_{1}, P_{2}\right]$ a range of isotropic points on the absolute line $\mathbf{f}_{\mathbf{1}}$ and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q H}_{2}$. The curve $k_{\pi}^{3}$ is
an entirely circular curve of the 3 rd class of the circularity type $(3,0)$ with the double line $\mathbf{f}_{\mathbf{1}}$. The absolute point $F$ is one tangent point on the double line $\mathbf{f}_{\mathbf{1}}$, and the other tangent point is the point of the range $\left[P_{1}, P_{2}\right]$ that corresponds to the singular curve of $\left[C_{1}, C_{2}\right]$ with the singular line $\mathbf{f}_{\mathbf{1}}$. Specially, if this latter point coincides with $F$ then line $\mathbf{f}_{\mathbf{1}}$ is an inflection line.


Figure 17: 3-circular curves of the 3rd class of type $e$ and $f$ From the Theorem 5 and the observation before we can also conclude

Theorem 12 Let $\left[C_{1}, C_{2}\right]$ be a pencil of special parabolas of type $(2,0),\left[P_{1}, P_{2}\right]$ a range of points and the curve $k_{\pi}^{3}$ the result of the projective mapping $\pi:\left[C_{1}, C_{2}\right] \mapsto\left[P_{1}, P_{2}\right]$ in $\mathbb{Q H}_{2}$. If the corresponding point to the singular curve whose one pencil is $(F)$ is the isotropic point of $\left[P_{1}, P_{2}\right]$ incident with the line $\mathbf{f}_{\mathbf{1}}$, then the curve $k_{\pi}^{3}$ is a 3-circular curve of type $(3,0)$ with a cusp at the point $F$.


Figure 18: 3-circular curve of the 3rd class of type $g$

## References

[1] H. Halas, N. Kovačević, A. Sliepčević, Line Inversion in the Quasi-Hyperbolic Plane, Proceedings ICGG 2014, Innsbruck, Austria, 739-748.
[2] E. Jurkin, Circular Cubics in pseudo-Euclidean plane, Novi Sad J. Math. 44/2 (2014), 195-206.
[3] E. Jurkin, N. KovačEvić, Entirely circular quartics in the pseudo-Euclidean plane, Acta Math. Hungar. 134/4 (2012), 27-45.
[4] E. Jurkin, Circular quartics in the isotropic plane generated by projectively linked pencils of conics, Acta Math. Hungar. 130/1-2 (2011), 35-49.
[5] F. Klein, Elementary Mathematics from an advanced Standpoint Geometry, Dover, New York, 2004.
[6] N. M. Makarova, On the projective metrics in plane, Učenye zap. Mos. Gos. Ped. in-ta 243 (1965), 274-290. (Russian)
[7] M. D. Milojević, Certain Comparative examinations of plane geometries according to Cayley-Klein, Novi Sad J. Math. 29/3, 1999, 159-167
[8] H. Sachs, Ebene Isotrope Geometrie, Friedr. Vieweg \& Sohn, Braunschweig/Wiesbaden, 1987.
[9] S. Salmon, Higher plane curves, Chelsea Publishing Company, New York, 1879.
[10] A. Sliepčević, I. Božıć, H. Halas, Introduction to the Planimetry of the Quasi-Hyperbolic Plane, KoG 17 (2013), 58-64.
[11] A. Slliepčević, V. Szirovicza, A classification and construction of entirely circular cubics in the hyperbolic plane, Acta Math. Hungar. 104/3 (2004), 185-201.
[12] D. M. Y Sommerville, Classification of geometries with projective metric, Proc. Ediburgh Math. Soc. 28 (1910), 25-41.
[13] I. M. Yaglom, B. A. Rozenfeld, E. U. YasinSKAYA, Projective metrics, Russ. Math Surreys 19/5 (1964), 51-113.

## Helena Halas

e-mail: hhalas@grad.hr
Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Kačićeva 26, Croatia

## Ema Jurkin

email: ejurkin@rgn.hr
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb,
10000 Zagreb, Pierottijeva 6, Croatia

