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Stitching B-Spline Curves Symbolically

Stitching B-spline Curves Symbolically

ABSTRACT

We present an algorithm for stitching B-spline curves,

which is different from the generally used least square

method. Our aim is to find a symbolic solution for unifying

the control polygons of arcs separately described as 4th de-

gree B-spline curves. We show the effect of interpolation

conditions and fairing functions as well.

Key words: B-spline curve, B-spline surface, merging,

interpolation, fairing

MSC2010: 65D17, 65D05, 65D07, 68U05, 68U07

Simboličko spajanje B-splajn krivulja

SAŽETAK

Predstavljamo algoritam za spajanje B-splajn krivulja, koji

se razlikuje od općenito upotrebljavane metode najma-

njih kvadrata. Naš cilj je naći simboličko rješenje za

ujedinjavanje kontrolnih poligona lukova koji se svaki za-

sebno opisuju kao B-splajn krivulje 4. stupnja. Takoder

pokazujemo utjecaj uvjeta interpolacije i postizanja glatkih

funkcija.

Ključne riječi: B-splajn krivulja, B-splajn ploha, integri-

ranje, interpolacija, postizanje glatkoće

1 Introduction

Stitching or merging B-spline curves is a frequently used
technique in geometric modeling, and is usually imple-
mented in CAD-systems. These algorithms are basically
numerical interpolations using the least squares method.
The problem, how to replace two or more curves which
are generated separately and defined as B-spline curves,
has well functioning numerical solutions, therefore, rela-
tively few papers have been published about this topic. In
[6] and [3] methods for approximate merging of B-spline
curves and surfaces are given. In [4] one of the symbolical
algorithms is described, which extends B-spline curves by
adding more interpolation points one by one at the end of
the curve. In [5] the construction of a covering surface is
shown for unifying more B-spline surfaces.
We approach the stitching problem from a geometrical
point of view, and represent a symbolical solution to com-
pute the control points of the new curve from the control
points of the two given curve segments and appropriate in-
terpolation conditions. This symbolical solution is stable,
it can be used generally for any two given curves. The er-
ror of the interpolation depends on the curvatures of the in-
put curves. Larger difference in their curvatures raises the
error. In order to reduce the error, two of the new control
points are adjusted by fairing conditions using the concrete
numerical data. This computation requires minimization
of quadratic functions leading to solve linear equations. In
this way we avoid non-linear optimization problems. Ap-
plying fairing functions for modifying the shape and the

properties of curves and surfaces is a standard technique.
In [7], [8] and [9] constructions of B-spline surfaces with
boundary conditions are presented using fairing functions.
Finally, merging of B-spline surface patches are shown ap-
plying the developed curve stitching method for their pa-
rameter curves.

2 Symbolical solution for stitching two
B-spline curve segments

In our symbolical solution for stitching two given curves
we assume that they are represented by B-spline segments
of degree 4 with uniform periodic knot vectors. The one-
parameter vector function of such a curve is

r(t) =
(

t4 t3 t2 t 1
)

·M ·













p0

p1

p2

p3

p4













,0≤ t ≤ 1,

where

M =
1
24













1 −4 6 −4 1
−4 12 −12 4 0
6 −6 −6 6 0
−4 −12 12 4 0
1 11 11 1 0













.

∗ Supported by a joint project between the TU Berlin and the BUTE.
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Figure 1: Input data and control points of one curve seg-
ment

We recall the symbolical solution of the interpolation prob-
lem ([10]), where the input data are the interpolation points
ps, pm, pe, and the derivatives at the endpointsts andte
(Fig. 1). The output is the 5 control pointspi, i = 0, . . . ,4
computed from the conditions

r(0) = ps, r(0.5) = pm, r(1) = pe, ṙ(0) = ts, ṙ(1) = te.

The control points are expressed by the input data as the
solution of this system of linear equations.










p0

p1
p2

p3
p4











=











−30.1667pe−46.1667ps+77.3333pm+6.33333te−16.3333ts
7.83333pe+11.8333ps−18.6667pm−1.66667te+2.66667ts
−6.16667pe−6.16667ps+13.3333pm+1.33333te−1.33333ts
11.8333pe+7.83333ps−18.6667pm−2.66667te+1.66667ts
−46.1667pe−30.1667ps+77.3333pm+16.3333te−6.33333ts











In order to demonstrate the behaviour of this symbolic in-
terpolation method we approximated a circular arcc(t)
with central angle≤ π/3 interpolated by the curver(t).
The numerical error measured by

∫ 1
0 (c(t)− r(t))2dt is less

than 10−28, i.e approximately zero.
We use this experience for stitching two joining B-spline
curve segments. In that algorithm we will use also similar
interpolation data and B-spline functions of degree 4.

Figure 2: Merging two curves into 4 B-spline segments

We assume that the two input segments are given by
B-spline functions, one byr1(t)with control pointsp1 j and
the other byr2(t) with control pointsp2 j, ( j = 0, . . . ,4).
We generate the resulting B-spline curve with 4 segments
qi(t), 0 ≤ t ≤ 1, (i = 1, . . . ,4) determined by 8 control
pointsb j, ( j = 0, . . . ,7).

The interpolation conditions are 5 points + 3 tangent vec-
tors (Fig. 2).

q1(0) = r1(0), q2(0) = r1(0.5), q2(1) = r1(1),

q3(1) = r2(0.5), q4(1) = r2(1)

q̇1(0) = ṙ1(0), q̇2(1) = ṙ1(1), q̇4(1) = ṙ2(1)

These 8 equations are linear in the unknown control points
of the new B-spline curve. The solution of the system re-
sults in the required control pointsb j, ( j = 0, . . . ,7) ex-
pressed as linear combinations of the given control points
p1i, p2i, (i = 0, . . . ,4).

Especially,

b0 = 1.07083p10+2.0166p11−4.2305p12+3.7694p13+1.4069p14

−0.0090p20−0.6500p21−1.8236p22−0.5416p23−0.0090p24

b1 = −0.01527p10+0.5944p11+1.0083p12−0.9638p13−0.3236p14

+0.0020p20+0.1500p21+0.4208p22+0.1250p23+0.0020p24

b2 = 0.0090p10+0.2055p11+0.2930p12+0.7444p13+0.2145p14

−0.0013p20−0.1000p21−0.2805p22−0.0833p23−0.0013p24

b3 = −0.0020p10+0.1833p11+0.9152p12−0.3555p13−0.2076p14

+0.0013p20+0.1000p21+0.2805p22+0.0833p23+0.0013p24

b4 = 0.0013p10−0.1222p11+0.0750p12+1.4361p13+0.3097p14

−0.0020p20−0.1500p21−0.4208p22−0.1250p23−0.0020p24

b5 = −0.0013p10+0.1222p11−0.1861p12−1.6305p13−0.3375p14

+0.0090p20+0.6500p21+1.8236p22+0.5416p23+0.0090p24

b6 = 0.0020p10−0.1833p11+0.3069p12+2.4944p13+0.5131p14

−0.01527p20−0.8500p21−1.3361p22+0.0833p23−0.01527p24

b7 = −0.0090p10+0.7944p11−1.4041p12−10.9388p13−2.2423p14

+0.0708p20+3.3500p21+6.0583p22+4.2500p23+1.0708p24

The range of magnitudes of the coefficients show that the
solution is stable. The corresponding vector equation of
the unified B-spline curve is

qi(t) =
(

t4 t3 t2 t 1
)

·M ·













bi+ j−1

bi+ j

bi+ j+1

bi+ j+2

bi+ j+3













,0≤ t ≤ 1,

wherei = 1, . . . ,4 (4 segments),j = 0, . . . ,4 (each with 5
control points).
The examples show that the interpolation error depends
on the variation of the curvatures of the given input
curves. This error is measured by the integrated sum of
the quadratic difference between the corresponding points
of the given and the computed new curves, while each seg-
ment is parametrized on the[0,1] interval. That is, the error

error= ∑
all segments

∫ 1

0
(r ik(t)−q j(t))

2 dt,

(i = 1,2, k = 1,2, j = 1. . .4).
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Fig. 2 shows the segmentation of the curves, where each of
the given curvesr1(t) andr2(t) is divided into two parts.
In Fig. 3 the result of stitching two circular arcs of equal
curvatures is shown with the computed control points.
The interpolation points are marked by circles. The new
B-spline curve interpolates the given arcs practically with
zero (10−26) error. If the curvatures of the two arcs are
different, the error is larger (Fig. 4 and Fig. 5, the
given curves are drawn lighter, the interpolation points are
marked with circles, the interpolation derivatives are not
shown). Moreover, the resulting curve shows a wavy shape
due to the low number of interpolation conditions.
The interpolation error can be reduced by prescribing more
interpolation conditions. The shape of the curve can be im-
proved by fairing (smoothing) conditions.

0.5 1.0 1.5 2.0

-0.5

0.5

1.0

1.5

2.0

Figure 3: Merged circular arcs, error ≈ 0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 4: Merged curves with different curvatures,
error= 0,0066

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 5: Merged curves with more different curvatures,
error= 0,026

3 The effect of fairing conditions

The solution, where 8 control points are determined from
2×5 given control points, result in a uniquely determined
B-spline curve with 4 segments. In order to apply fairing
conditions free control points are necessary. Therefore, the
prescribed 8 interpolation conditions have to be relaxed. In
our investigation we have deleted two interpolation points
(the midpoints of the input curves), and have chosen two
variable control pointsb3 andb4 for modifying the shape
of the resulting curve. In this case 3 points and 3 deriva-
tives are prescribed,

q1(0) = r1(0), q2(1) = r1(1), q4(1) = r2(1)

q̇1(0) = ṙ1(0), q̇2(1) = ṙ1(1), q̇2(1) = ṙ2(1)

We consider the same integrated sum of the quadratic dif-
ferences between the given and required B-spline curve
segments, which measures the interpolation error, but now
it contains two free control points, and is considered as tar-
get function to be minimized.

F(b3,b4) = ∑
all segments

∫ 1

0
(r ik(t)−q j(t))

2 dt,

(i = 1,2, k = 1,2, j = 1. . .4).

This function is quadratic in the variables. Therefore, the
minimization leads to a system of linear equations. The
minimal value measures the interpolation error.

5
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0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 6: The error= 0,024

Though the error has been reduced, but the shape is still
wavy. In order to get smoother curve, we add to the tar-
get function two additional terms. One is for minimizing
the difference of the derivatives between the given and re-
quired curves, the other for minimizing the variation of the
second derivative of the middle curve segmentsq2(t) and
q3(t), where the curvatures of the given curves show larger
difference.
The extended target function is

∑all segments[
∫ 1

0 (r ik(t)−q j(t))2 dt

+0,2 ·
∫ 1
0 (ṙ ik(t)− q̇ j(t))2]dt

+0,1 ·∑3
j=2

∫ 1
0 q̈ j(t)2 dt

The minimization of this target function results in a
smoother curve and larger error. The coefficients 0,2 and
0,1 are chosen by experiments. If the weight of the third
term is larger, the upper bump in the new merged curve
disappears and the error is growing (Fig. 7). It is obvious
that smoothing requires more interpolation conditions.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 7: After fairing the error= 0,048

4 Improving the solution

More interpolation conditions lead to more control points,
therefore, the resulting curve will consist of more curve
segments. After several experiments our solution will have
8 curve segments with 12 new control points (Fig. 8). Ac-
cordingly, the input curves have to be segmented each into
4 parts.

Figure 8: Segmentation of the merged curve

First, all the 12 new control points are computed from 12
interpolation conditions, which are 7 interpolation points
and 5 tangent vectors. The interpolation points are points
of the input curves corresponding to the starting point of
the curve segmentq1(t) and to the end points of the 1., 2.,
4., 6., 7., 8. curve segments (Fig. 8). The first derivatives
are prescribed at the two end points, at the midpoints and
at the joining point of the given curves. These conditions
expressed with the B-spline vector functions are linear in
the unknown control pointsbi, i = 0, . . . ,11. The solution
is expressed by linear combinations of the given control
pointsp1 j andp2 j, j = 0, . . . ,4. This symbolical solution
is shown in Fig. 9. The error has been succesfully reduced
from 0,026 to 0,0035.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 9: Merged curve computed by the symbolical solu-
tion. The error= 0,0035.
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If the given curves do not join, but there is a gap between
them, the interpolation point is the midpoint between the
two end points of the given curves and similarly, the inter-
polation tangent vector at this point is the middle value of
the two end tangents. In this way a B-spline curve can be
determined which replaces parts of the two given curves
and connect them smoothly (Fig. 10).

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 10: Stitching two curves with a gap

0.5 1.0 1.5 2.0

-0.5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 11:The control polygon with two variable control
points

The shape of the solution can be improved by applying
fairing conditions. Our investigations have shown that two
variable control points provide satisfactory solutions. Fig.
11 shows the control polygon of the merged B-spline curve
with 10 precomputed and 2 free control points. The inter-
polation conditions are now 7 points and 3 tangent vectors,
and the fairing condition is given by the same target func-
tion as in Section 2, but with 8 curve segments. The solu-
tion of minimization results in a slightly smoother curve.
The interpolation error slightly increased in this case from
0,0035 to 0,004. The picture of the curve looks like in Fig.
9, the difference is not visible.
The symbolical solution (without fairing) leads to
smoother curve and smaller error, if the variation of the
curvatures of the given curve is smaller. On the base of
this experience we have applied it for stitching B-spline
patches.

5 Stitching two B-spline patches

We assume that the surface patches are represented by two-
parameter vector functions of 4×4 degree with periodical
uniform knot vectors. The matrix form is

r(u,v) = (u4 u3 u2 u 1) ·M ·B ·MT
· (v4 v3 v2 v 1)T ,

(u,v) ∈ [0,1]× [0,1]

and

M =
1
24













1 −4 6 −4 1
−4 12 −12 4 0
6 −6 −6 6 0
−4 −12 12 4 0
1 11 11 1 0













.

The geometric data are the points of the control net denoted
by

B = [b[i, j]] , i = 0, . . .4, j = 0, . . .4.

In the computation of merging two given B-spline patches
we apply the symbolical solution shown for merging two
B-spline curve segments. Each given control net consists
of 5×5 control points. The new control net of 5×12 con-
trol points are computed row by row by the same scheme
applied for curves. The resulting surface has 1×8 patches
joining with third order continuity, if there are no multiple
control points and knot values.
In Fig. 12 two B-spline surface patches are shown defined
separately. In Fig. 13 the merged surface is shown. The
interpolation error has been computed by numerical inte-
gration of the squared differences between the points of
the given and the resulting surfaces at the same parameter
values. This estimated error is 0,0032.
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-0.5

0.0

0.5

0.0
0.5

1.0
1.5

0.5

1.0

1.5

Figure 12: Two given surface patches

-0.5

0.0

0.5

0.0
0.5

1.0
1.5

0.5

1.0

1.5

Figure 13: The merged surface

Stitching of separately defined B-spline patches ensures
higher order continuity along the joining curves than
known constructions. In several applications surfaces are
determined by local geometric data ([10], [11]). This is
the case for example in surface manufacturing in a neigh-
borhood of a processing tool, however, a smooth resulting
surface is required. A series in a stripe of separately gen-
erated surface patches are shown in [12].

6 Conclusions

We have presented stitching algorithms for two given
B-spline curve segments. Our final symbolical solution
generates a B-spline curve with 8 segments independently
from the numerical input data. This continuous curve ap-
proximates the two separately defined (even not joining)
curve segments. We have proposed an additional fairing
method to improve the shape of the resulting curve. We
have also analyzed the interpolation error in many differ-
ent cases. The proposed algorithm gave the most satisfac-
tory result. This has been applied for merging two B-spline
surface patches.
Our aim is to extend this method for stitching more
B-spline curves.
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Lamoenian Circles of the Collinear Arbelos

ABSTRACT

We give an infinite sets of circles which generate

Archimedean circles of a collinear arbelos.
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oenian circle
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Lamoenove kružnice kolinearnog arbelosa

SAŽETAK

Pokazujemo beskonačne skupove kružnica koje generiraju

Arhimedove kružnice kolinearnog arbelosa.

Ključne riječi: arbelos, kolinearni arbelos, potencijalna

kružnica, Lamoenova kružnica

1 Introduction

For a pointO on the segmentAB, let α, β andγ be circles
with diametersAO, BO andAB respectively. Each of the
areas surrounded by the three circles is called an arbelos.
The radical axis of the circlesα andβ divides each of the
arbeloi into two curvilinear triangles with congruent incir-
cles (see the lower part of Figure 1). Circles congruent to
those circles are said to be Archimedean.

γ

α

β

O

I

AB

Figure 1:A circle generating Archimedean circles with γ

For a pointT and a circleδ, if two congruent circles of
radiusr touching atT also touchδ at points different from
T , we sayT generates circles of radiusr with δ, and the
two circles are said to be generated byT with δ. If the

generated circles are Archimedean, we sayT generates
Archimedean circles withδ. Frank Power seems to be the
earliest discoverer of this kind Archimedean circles: The
farthest points onα andβ from AB generate Archimedean
circles withγ [6].

Let I be one of the points of intersection ofγ and the rad-
ical axis ofα andβ. Floor van Lamoen has found that the
endpoints of the diameter of the circle with diameterIO
perpendicular to the line joining the centers of this circle
andγ generate Archimedean circles withγ [2] (see the up-
per part of Figure 1). We say a circleC generates circles of
radiusr with δ, if the endpoints of a diameter ofC generate
circles of radiusr with δ. Circles generating Archimedean
circles withγ are said to be Lamoenian. In this article we
consider those circles in a general way.

2 The collinear arbelos

In this section we consider a generalized arbelos. For two
pointsP andQ in the plane,(PQ) andP(Q) denote the cir-
cle with diameterPQ and the circle with centerP passing
throughQ respectively. For a circleδ, Oδ denotes its cen-
ter. For two pointsP andQ on the lineAB, let α = (AP),
β = (BQ) andγ = (AB). Let O be the point of intersec-
tion of AB and the radical axis of the circlesα andβ and
let u = |AB|, s = |AQ|/2 andt = |BP|/2. Unless otherwise
stated, we use a rectangular coordinate system with origin
O such that the pointsA, B andP have coordinates(a,0),
(b,0) and(p,0) respectively witha− b = u. The configu-
ration(α,β,γ) is called a collinear arbelos if the four points

9



KoG•17–2013 H. Okumura: Lamoenian Circles of the Collinear Arbelos

lie in the order (i)B, Q, P, A or (ii) B, P, Q, A, or (iii) P, B,
A, Q. In each of the cases the configurations are explicitly
denoted by(BQPA), (BPQA) and(PBAQ) respectively. In
the caseP=Q=O, (α,β,γ) gives an ordinary arbelos, and
(α,β,γ) is called a tangent arbelos. Archimedean circles of
the ordinary arbelos are generalized to the collinear arbe-
los(α,β,γ) as circles of radiusst/(s+ t), which we denote
by rA [3]. Circles of radiusrA are also called Archimedean
circles of(α,β,γ). The radius is also expressed by

rA =
|AO||BP|

2u
=

a|p− b|
2u

. (1)

3 Lamoenian circles of the collinear arbelos

A circle generating circles of radiusrA with γ is also said
to be Lamoenian for the collinear arbelos(α,β,γ). In this
section we give a condition that a circle is Lamoenian. For
a circleδ of radiusr and a pointT , let us define

r(T,δ) =
|r2−|TOδ|

2|

2r
,

which equals the radius of the generated circles byT with
δ by the Pythagorean theorem.

Theorem 1 Let δ be a circle of radius r and let J, H be
points with J lying on δ. The circle (HJ) generates circles
of radius s with δ if and only if

|HOδ|
2 = r(r±4s). (2)

In this event, the following statements are true.

(i) If a points K lies on the circle Oδ(H), the circle (KJ)
generates circles of radius s with δ.

(ii) The point O(HJ) lies on the circle of radius r/2 with
center O(HOδ).

Proof. Let h = |HOδ| (see Figure 2). We use a rectangu-
lar coordinate system with originOδ such that the coordi-
nates ofH is (h,0) in this proof. Let( f ,g) be the coordi-
nates of the pointO(HJ), and letT be one of the endpoints
of the diameter of(HJ) perpendicular toOδO(HJ). Then
−−−−→
O(HJ)T = k(−g, f ) and

−−→
OδT = ( f − kg,g+ k f ) for a real

numberk. From |O(HJ)T | = |O(HJ)H|, (−kg)2+(k f )2 =

( f − h)2+ g2, which implies

k2 =
( f − h)2+ g2

f 2+ g2 . (3)

The circle(HJ) generates circles of radiuss with δ if and
only if

r(T,δ) =
|r2− (( f − kg)2+(g+ k f )2)|

2r
= s.

Since (3) holds, the last equation is equivalent to

1
4

h2+

(

f −
h
2

)2

+ g2 =
1
2

r(r±2s),

where the plus (resp. minus) sigh should be taken whenT
lies outside (resp. inside) ofδ. If (v,w) are the coordinates
of the pointJ, (v+ h)/2= f andw/2= g. Therefore the
last equation is equivalent to

1
4

h2+
1
4

r2 =
1
2

r(r±2s),

which is also equivalent to (2). The part (i) obviously
holds. The center of(HJ) is the image ofJ by the dila-
tion with centerH and scale factor 1/2. This proves (ii).
�

Oδ H

T
J

O (HJ )

δ

Figure 2

Let ε be the circle with centerOγ belonging to the pen-
cil of circles determined byα andβ for the collinear ar-
belos (α,β,γ). We call ε the radical circle of(α,β,γ).
The circle is considered in [4] and [5] for(BQPA) and
(BPQA). If α and β have a point in common,ε passes
through the point. For(BQPA) let V be the point of tan-
gency of one of the tangents ofα from O (see Figure 3).
Then|OV |2 = ap. If |OOγ|

2 > ap, a tangent fromOγ to the
circleO(V ) can be drawn. Thenε passes through the point
of tangency. If|OOγ|

2 = ap, ε is the point circleOγ, which
coincides with one of the limiting points of the pencil. If
|OOγ|

2 < |ap|, ε does not exist. Lete be the radius ofε.
For (BQPA), e2 = |OOγ|

2 − ap by the Pythagorean theo-
rem. For(BPQA) and (PBAQ), e2 = |OOγ|

2 + |ap| (see
Figure 4). In any case

e2 = |OOγ|
2
− ap. (4)

ε
α

β γ

AOQOγ

V

B P

Figure 3:The case |OγO|2 > |ap| for (BQPA)
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ABP QOOγ

α
β

ε
γ

Figure 4:(PBAQ)

Theorem 2 For a collinear arbelos (α,β,γ) with radical
circle ε, if points J and H lie on γ and ε respectively, then
the circle (HJ) is Lamoenian.

Proof. For (BPQA) and(BQPA), rA = a(p− b)/(2u) by
(1). Therefore by (4),

u
2

(u
2
−4rA

)

=
(a− b)2

4
−a(p−b) =

(a+ b)2

4
−ap= e2.

Similarly for (PBAQ), we get

u
2

(u
2
+4rA

)

= e2.

Hence the theorem is proved by Theorem 1. �

4 Quartet of circles

In this section we show that a Lamoenian circle given by
Theorem 2 is a member of a set of four Lamoenian circles.
All the suffixes are reduced modulo 4 in this section. Let
J0 be a point on a circleδ, and letH be a point which does
not lie onδ (see Figures 5, 6). LetR0R1 be the diameter of
the circle(HJ0) perpendicular to the lineOδO(HJ0) and let
R0 andR1 generate circles of radiuss with δ. Let J1 be the
point of intersection of the lineJ0R1 andδ, and letR2 be
the point such thatHR1J1R2 is a rectangle. Then the circle
(HJ1) also generates circles of radiuss with δ by Theorem
1. WhileR1 generates circles of radiuss with δ. Therefore
R2 also generates circles of radiuss with δ. Similarly we
construct the pointsJ2 andJ3 onδ and the pointsR3 andR4

such thatJ2 andJ3 lie on the linesJ1R2 andJ2R3 respec-
tively andHR2J2R3 andHR3J3R4 are rectangles. ThenR3

generates circles of radiuss with δ andR4 coincides with
R0. Now we get the pointsJi on δ andRi (i = 0,1,2,3)
such thatRiRi+1 is the diameter of(HJi), Ri generates cir-
cles of radiuss with δ, J0J1J2J3 is a rectangle,Ri lies on the
line JiJi−1. The four circles(HJi) (i = 0,1,2,3) are called
a quartet onδ, andH andJ0J1J2J3 are called the base point
and the rectangle of the quartet respectively.

R 1

δ

R 2

R 0

R 3

H

J 0

J 1

J 2

J 3

Figure 5:H lies inside of δ

H

δ

R 0

R 1

J 0

J 1

R 3

J 2

R 2

J 3

Figure 6:H lies outside of δ

By the definition ofRi, R0, R2, H are collinear, alsoR1,
R3, H are collinear, and the two lines are perpendicular.
Let li = |HRi|. Then|HJ0|

2+ |HJ2|
2 = l2

0 + l2
1 + l2

2 + l2
3 =

|HJ1|
2 + |HJ3|

2. Therefore|HJ0|
2 + |HJ2|

2 = |HJ1|
2 +

|HJ3|
2 holds.

R 1

R 2

R 3

R 0

H

J 0

J 1

J 2

J 3

QP
AB

α β

γ

ε

Figure 7:A quartet of Lamoenian circles on ε for (PBAQ)
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For a collinear arbelos(α,β,γ) with radical circleε, if the
two pointsH and J0 lie on ε and γ respectively, we can
construct a quartet(HJi) (i = 0,1,2,3) on γ consisting of
Lamoenian circles by Theorem 2. Also ifH and J0 lie
on γ andε respectively, we can construct a quartet(HJi)

(i = 0,1,2,3) on ε consisting of Lamoenian circles (see
Figure 7).

Theorem 3 For a quartet (HJi) (i = 0,1,2,3) on a circle
δ, the rectangle is a square if and only if (HJi) touches
δ for some i. In this event, (HJi+2) also touches δ, and
(HJi−1) and (HJi+1) are congruent and intersect at Oδ.

Proof: If (HJ0) touchesδ, R0J0R1 is an isosceles right tri-
angle, since|OδR0| = |OδR1|. This implies thatJ3J0J1 is
also an isosceles right triangle, i.e.,J0J1J2J3 is a square.
Conversely let us assumeJ0J1J2J3 is a square. We as-
sume that(HJi) does not touchδ for i = 0,1,2,3. The
sides or the extended sides of the square and the circle
Oδ(R0) intersect at eight points, four of which areR0, R1,
R2, R3. If |JiRi| = |JiRi+1|, (HJi) touchesδ. Therefore
|JiRi| 6= |JiRi+1| for i = 0,1,2,3. This can happen only
when R1, R2, R3, R4 lie inside of δ (see Figures 8 and
9). Hence|J0R0| = |J1R1| = |J2R2| = |J3R3| 6= |J0R1| =

|J1R2| = |J2R3| = |J3R0|. Therefore the four rectangles
HRiJiRi+1 (i = 0,1,2,3) are congruent. Then they must be
squares, sinceH is their common vertex. But this implies
|JiRi| = |JiRi+1|, a contradiction. Hence(HJi) touchesδ
for somei. ThenH lies onJiJi+2. Therefore(HJi+2) also
touchesδ. While Ji−1Ji+1 andHOδ are perpendicular and
intersect atOδ. Therefore(HJi−1) and (HJi+1) are con-
gruent and pass throughOδ. �

J 0
J 1

J 2 J 3

R 0

R 1

R 3

R 2

δ

Figure 8

δ

R 0

J 2 J 3

J 1 J 0

R 3

R 2

R 1

Figure 9

5 Special cases

We conclude this article by considering the tangent arbelos
(α,β,γ) with O = P = Q. Sinceε = Oγ(O), Power’s result
mentioned in the introduction is restated as bothα andβ
are Lamoenian. Figure 10 shows a quartet onγ with base
pointO with J0 = A, in whichα andβ are members of the
quartet. Figure 11 shows a quartet onε with base pointA
with J0 = O. In this figureα and the reflected image ofβ
in Oγ are members of the quartet. In each of the cases, the
rectangle is a square.

AB

β

α

γ

Oγ O

ε

Figure 10:A quartet on γ with base point O

AB

α

Oγ O

ε

γ

β

Figure 11:A quartet on ε with base point A
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Let L be the radical axis ofα andβ. Quang Tuan Bui has

found that the points of intersection of the circles(AOβ)

and(BOα) lie onL and generate Archimedean circles with

γ for the tangent arbelos(α,β,γ) [1]. Let R1 be one of the

points of intersection, and let the line parallel toAB pass-

ing throughR1 intersectγ at a pointK, whereK lies on

the same side ofL asA. Figure 12 shows a quartet onγ
with base pointO with J0 = K. In this figureR0 andR2

lie on AB while R3 lies onL. Figure 13 shows a quartet
on ε with base pointK with J0 = O. In this figure,R1J0

touchesε at O. ThereforeJ1 = J0 = O, i.e., the rectangle
degenerates into a segment, and the quartet consists of two
different Lamoenian circles.

ε

β

γ

α

AB
O

R 1

L

J 0 = KJ 1

R 2

J 2 J 3
R 3

R 0

Oβ Oα

Figure 12:A quartet on γ with base point O

R 0 = R 2

J 0 = J 1

KR 1R 3

Oβ Oα

J 3 = J 2 ε

β

γ

AB
O

L

Figure 13:A quartet on ε with base point K
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ABSTRACT

We introduce a novel definition of a parabola into the

framework of universal hyperbolic geometry, show many

analogs with the Euclidean theory, and also some remark-

able new features. The main technique is to establish

parabolic standard coordinates in which the parabola has

the form xz= y2. Highlights include the discovery of the

twin parabola and the connection with sydpoints, many

unexpected concurrences and collinearities, a construction

for the evolute, and the determination of (up to) four

points on the parabola whose normals meet.

Key words: universal hyperbolic geometry, parabola
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Parabola u univerzalnoj hiperboličkoj geometriji I

SAŽETAK

Uvodimo novu definiciju parabole u okvir univerzalne

hiperboličke geometrije, pokazujemo mnoge analogone s

euklidskom geometrijom, ali i neka izvanredna nova svoj-

stva. Osnovna je tehnika uspostavljanje paraboličnih stan-

dardnih koordinata u kojima parabola ima jednadžbu ob-

lika xz= y2. Ističemo otkriće parabole blizanke, vezu sa

sidtočkama, mnoge neočekivane konkurentnosti i koline-

arnosti, konstrukciju evolute te odredivanje (do najvǐse)

četiriju točaka parabole u kojima normale parabole pro-

laze jednom točkom.

Ključne riječi: univerzalna hiperbolička geometrija,

parabola

1 Introduction

This paper begins the study of theparabola in univer-
sal hyperbolic geometry (UHG). The framework is that of
[16], [17], [18], [19] and [20]; a completely algebraic and
more general formulation of hyperbolic geometry which
extends to general fields (not of characteristic two), and
also unifies elliptic and hyperbolic geometries. We will see
that this investigation opens up many new phenomenon,
and hints again at the inexhaustible beauty of conic sec-
tions!

In Euclidean geometry, the parabola plays several distin-
guished roles. It is the graph resulting from a quadratic
function f (x) = a+ bx+ cx2, and so familiar as the sec-
ond degree Taylor expansion of a general function. The
parabola is also a conic section in the spirit of Apollonius,
obtained by slicing a cone with a plane which is parallel
to one of the generators of the cone. In affine geometry
the parabola is the distinguished conic which is tangent to
the line at infinity. In everyday life, the parabola occurs
in reflecting mirrors and automobile head lamps, in satel-
lite dishes and radio telescopes, and in the trajectories of
comets.

Of course the ancient Greeks also studied the familiar met-
rical formulation of a parabola: it is the locus of a point
which remains equidistant from a fixed pointF , called the
focus, and a fixed linef , called thedirectrix. (We have a
good reason for using the same letters for both concepts,
with only case separating them). Such a conicP has a line
of symmetry: theaxis athroughF perpendicular tof . It
also has a distinguished pointV called thevertex, which
is the only point of the parabola lying on the axisa, aside
from the point at infinity. The vertexV is the midpoint
between the focusF and thebase pointB≡ a f .

For such a classical parabolaP hundreds of facts are
known, see [1], [4], [5], [8], [10], [13], [14]; quite a few
of them going back to Archimedes and Apollonius, others
added in more recent centuries. Of particular importance
are theorems that relate to an arbitrary pointP on the conic
and its tangent linep. In particular the construction ofp
itself is important: there are two common ways of doing
this. One is to take the footT of the altitude fromP to the
directrix f , and connectP to the midpointM of TF; so that
p= PM. Another is to take the perpendicular linet to PF
throughF , and find its meetSwith the directrix; this gives
p= PS. The pointS is equidistant fromT andF , and the
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circleS with centerSthroughF is tangent to both the lines
PF andPT.
A related and useful fact is that a chordPN is a focal
chord—meaning that it passes throughF—precisely when
the meet of the two tangents atP andN lies on the direc-
trix f , and in this case the two tangents are perpendicu-
lar. These facts are illustrated in Figure 1. Another result,
which figures often in calculus, is that ifP andQ are arbi-
trary points on the parabola withZ the meet of their tan-
gentsp andq, andT,U andW are the feet of the altitudes
from P,Q andZ to the directrix, thenW is the midpoint of
TU.

J
VB

T
s r

t

s

S

F

f

a

P

S

P

N

M

p

Figure 1: The Euclidean Parabola

So when we investigate hyperbolic geometry, some natural
questions are: what is the analog of a parabola in this con-
text, what properties of the Euclidean case carry over in
this setting, and what additional properties might the hy-
perbolic parabola have that do not hold in the Euclidean
case? These issues have been studied by several authors,
such as [2], [15], [9].
In this paper we answer these questions in a new and more
general way, using the wider framework of UHG, and
allowing the beginnings of a much deeper investigation.
There is a very natural analog of a parabola in this hyper-
bolic setting, and many, but certainly not all, properties of
the Euclidean parabola hold or have reasonable analogs for
it. But there are many interesting aspects which have no
Euclidean counterpart, such as the existence of a dual or
twin parabola, and an intimate connection with the theory
of sydpoints, as laid out in [20].
The outline of the paper is as follows. We first give a
very brief review of universal hyperbolic geometry, where
the algebraic notions ofquadranceandspreadreplace the
more traditional transcendental measurements ofdistance
andangle. We then define the parabola in the hyperbolic
setting (we often refer simply to thehyperbolic parabola),
give a dynamic geometry package construction for it, in-
troduce some basic points associated to it, and use some of
these and the Fundamental theorem of Projective Geome-
try to definestandard coordinates, in which the parabola

has the convenient equationxz= y2. This allows a sim-
ple parametrization for the curve, as well as pleasant ex-
plicit formulas for many interesting points, lines, conics
and higher degree curves associated to it.
In our study of the basic points and lines associated with
the parabolaP0, concrete and explicit formulae are key ob-
jectives, because they allow us a firm foundation for deeper
investigations. The main thrust of the paper is then to show
how the hyperbolic parabola shares many similarities with
the Euclidean parabola. The highlights include the duality
leading to the twin parabola, a straightedge construction
of the evolute of the parabola, and a conic construction of
four points on the parabola whose normals pass through a
fixed point (in the Euclidean case there are at most three
points with this property).
This paper is the first of a series on the hyperbolic parabola.
In future papers we will show that there are many new and
completely unexpected aspects of the hyperbolic parabola;
it is a very rich topic indeed.

1.1 A brief review of universal hyperbolic geometry

We work over a fixed field, not of characteristic two, and
give a formulation of universal hyperbolic geometry valid
with a general symmetric bilinear form—this generality
will be important for us when we introduce parabolic stan-
dard coordinates. This is only a quick introduction; the
reader may consult [17], [18], [19], [20] for more details.
A (projective) point is a proportiona= [x : y : z] in square
brackets, or equivalently a projective row vectora =
[

x y z
]

(unchanged if multiplied by a non-zero num-
ber). A (projective) line is a proportionL = 〈l : m : n〉 in
pointed brackets, or equivalently a projective column vec-
tor

L =





l
m
n



 .

The incidencebetween the pointa= [x : y : z] and the line
L = 〈l : m : n〉 is given by the relationaL= lx+my+nz=
0. Thejoin of points is defined by

a1a2 ≡ [x1 : y1 : z1]× [x2 : y2 : z2]

≡ 〈y1z2− y2z1 : z1x2− z2x1 : x1y2− x2y1〉 (1)

while themeetL1L2 of lines L1 ≡ 〈l1 : m1 : n1〉 andL2 ≡

〈l2 : m2 : n2〉 is similarly defined by

L1L2 ≡ 〈l1 : m1 : n1〉× 〈l2 : m2 : n2〉

≡ [m1n2−m2n1 : n1l2−n2l1 : l1m2− l2m1] . (2)

Collinearity of three pointsa1,a2,a3 will here be repre-
sented by the abbreviation[[a1a2a3]] , and similarly the
concurrency of three linesL1,L2,L3 will be abbreviated
[[L1L2L3]]. These are determinantal conditions.
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The metrical structure is given by a (non-degenerate) 3×3
projective symmetric matrixC and its adjugateD (where
bold signifies a projective matrix- determined only up to a
non-zero multiple). The pointsa1 anda2 areperpendicu-
lar precisely whena1CaT

2 = 0, writtena1 ⊥ a2, while lines
L1 andL2 areperpendicular precisely whenLT

1 DL2 = 0,
written L1 ⊥ L2. The pointa and the lineL aredual pre-
cisely whenL= a⊥ ≡CaT , or equivalentlya= L⊥ ≡ LTD,
so that points are perpendicular precisely when one is inci-
dent with the dual of the other, and similarly for two lines.
A point a is null precisely when it is perpendicular to it-
self, that is, whenaCaT = 0, while a lineL is null precisely
when it is perpendicular to itself, that is, whenLTDL = 0.
The null points determine thenull conic, sometimes also
called theabsolute.

Universal Hyperbolic geometryin the Cayley Klein model
arises from the special case

C = D = J ≡





1 0 0
0 1 0
0 0 −1



 . (3)

In this framework the pointa = [x : y : z] is null precisely
whenx2+y2−z2 = 0, and dually the lineL = 〈l : m : n〉 is
null precisely whenl2 +m2 −n2 = 0. So we can picture
the null circle in affine coordinatesX ≡ x/zandY ≡ y/zas
the (blue) circleX2+Y2 = 1. Thequadranceq between
points and thespread S between lines are then given by
essentially the same formulas:

q([x1 : y1 : z1] , [x2 : y2 : z2])

= 1−
(x1x2+ y1y2− z1z2)

2

(

x2
1+ y2

1− z2
1

)(

x2
2+ y2

2− z2
2

)

S(〈l1 : m1 : n1〉 ,〈l2 : m2 : m2〉) (4)

= 1−
(l1l2+m1m2−n1n2)

2

(

l21 +m2
1−n2

1

)(

l22 +m2
2−n2

2

) .

The figures in this paper are generated in this model, with
however the outside of the null circle playing just as big
a role as the inside–this takes some getting used to for the
classical hyperbolic geometer! In addition, it will be nec-
essary for us to adopt a more general and flexible approach
to deal with projective changes of coordinates, which will
be needed to study the parabola in what we call standard
coordinates.

So more generally, the bilinear forms determined by
a general 3× 3 projective symmetric matrixC and its
adjugateD can be used to define the dual notions of
(projective) quadrance q(a1,a2) between pointsa1 and
a2, and (projective) spreadS(L1,L2) between linesL1 and

L2 as

q(a1,a2)≡ 1−

(

a1CaT
2

)2

(

a1CaT
1

)(

a2CaT
2

) and

S(L1,L2)≡ 1−

(

LT
1 DL2

)2

(

LT
1 DL1

)(

LT
2 DL2

) . (5)

While the numerators and denominators of these expres-
sions depend on choices of representative vectors and ma-
trices fora1,a2,C,L1,L2 andD, (which are by definition
defined only up to scalars), the overall expressions are
well-defined projectively.
It follows that q(a,a) = 0 and S(L,L) = 0, while
q(a1,a2) = 1 precisely whena1 ⊥ a2, and dually
S(L1,L2) = 1 precisely whenL1 ⊥ L2. Also quadrance and
spread are naturally dual:

S
(

a⊥1 ,a
⊥
2

)

= q(a1,a2) .

In [16], it was shown that both these metrical notions can
also be reformulated projectively and rationally using suit-
able cross ratios (and no transcendental functions!) To
connect with the more familiar distance between points
d (a1,a2), and angle between linesθ(L1,L2) in the Klein
projective model: when we restrict to points and lines in-
side the null circle,

q(a1,a2) =−sinh2 (d (a1,a2)) and

S(L1,L2) = sin2 (θ(L1,L2)) .

For a trianglea1a2a3 with associated trilateralL1L2L3, we
defineq1 ≡ q(a2,a3), q2 ≡ q(a1,a3) andq3 ≡ q(a1,a2),
andS1≡S(L2,L3), S2≡S(L1,L3) andS3≡S(L1,L2). The
main trigonometric laws in the subject can be restated in
terms of these quantities (see UHG I [17]).

2 The parabola and its construction

In this section we introduce definitions and some basic re-
sults for aparabolain universal hyperbolic geometry. We
will work and illustrate the theory in the familiar Cayley-
Klein setting with our null circle/absolute the unit circle in
the plane. The situation is in some sense richer than in the
Euclidean setting because ofduality: whenever we define
an important pointx, its dual lineX = x⊥ is also likely to
be important, and vice versa. We remind the reader that we
will consistently employ small letters for points and capi-
tal letters for lines, with the convention that ifxi is a point,
thenXi = x⊥i is the corresponding dual line and conversely.
So what is a parabola in the hyperbolic setting? As already
discussed in [9], the definition is not obvious: there are
several different possible ways of trying to generalize the
Euclidean theory. Recall that ifa is a point andL is a line,
then the quadranceq(a,L) is defined to be the quadrance
betweena and the foott of the altitude line froma to L.
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Figure 2: A parabolaP0 with foci f1 and f2

Definition 1 Suppose that f1 and f2 are two non-
perpendicular points such that f1 f2 is a non-null line. The
parabola P0 with foci f1 and f2 is the locus of a point p0
satisfying

q( f1, p0)+q(p0, f2) = 1. (6)

The lines F1 ≡ f⊥1 and F2 ≡ f⊥2 are thedirectrices of the
parabolaP0.

This definition is likely surprising to the classical geome-
ter. In Euclidean geometry, such a relation defines acircle,
so at this point it is not clear what justification we have for
our definition of a parabola. The following connects our
theory with the more traditional approach in [11] and [7].

Theorem 1 (Parabola focus directrix) The point p0 sat-
isfies (6) precisely when either of the following hold:

q( f1, p0) = q(p0,F2) or q( f2, p0) = q(p0,F1) .

Proof. If ( f1p0)F1 ≡ t1 and ( f2p0)F2 ≡ t2 are the feet
of the altitudes from a pointp0 on the parabolaP0 with
foci f1 and f2 to the directricesF1 andF2, then f1 andt1
are perpendicular points, as aref2 andt2. It follows that
q( f1, p0) + q(p0, t1) = 1 and q( f2, p0) + q(p0, t2) = 1.
But then (6) is equivalent toq( f1, p0) = q(p0,F2) or to
q( f2, p0) = q(p0,F1). �

In this way we recover the ancient Greek metrical defini-
tion of the parabola, but we note now that there aretwo
foci-directrix pairs: ( f1,F2) and ( f2,F1) . This is a main
feature of the hyperbolic theory of the parabola: a funda-
mental symmetry between the two foci-directrix pairs.
The reason for the index 0 on the pointp0 and the
parabolaP0 will become clearer when we introduce the
twin parabolaP 0. We observe that the focif1 and f2 do
not lie on the parabolaP0, since for example iff1 lies on
P0, thenq( f1, f1)+q( f2, f1) = 1, which would imply that

q( f1, f2) = 1, contradicting that the assumption of non-
perpendicularity off1 and f2. In Figure 2 we see an ex-
ample of a parabolaP0, in red, with foci f1 and f2, and
directricesF1 andF2, also in red.
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Figure 3: Various examples of parabolas

In Figure 3 we see some different examples of parabolas
over the rational numbers, at least approximately. When
the foci f1 and f2 are both interior points of the null circle
C , there is no pointp satisfying the conditionq(p, f1)+
q(p, f2) = 1, since the quadrance between any two interior
points is always negative, and the quadrance between an
interior point and an exterior point is greater than or equal
to 1. This paper deals with non-empty parabolas, by ex-
tending the field if necessary, as we shall see.

Theorem 2 (Parabola conic)The parabolaP0 with foci
f1 and f2 is a conic.

Proof. Suppose thatf1 = [x1 : y1 : z1] and f2 = [x2 : y2 : z2].
Then the pointp= [x : y : z] lies onP0 precisely when

(

1−
(xx1+ yy1− zz1)

2

(x2+ y2− z2)
(

x2
1+ y2

1− z2
1

)

)

+

(

1−
(xx2+ yy2− zz2)

2

(x2+ y2− z2)
(

x2
2+ y2

2− z2
2

)

)

= 1

which yields the quadratic equation

(

x2+ y2
− z2)(x2

1+ y2
1− z2

1

)(

x2
2+ y2

2− z2
2

)

= (xx1+ yy1− zz1)
2(x2

2+ y2
2− z2

2

)

+(xx2+ yy2− zz2)
2(x2

1+ y2
1− z2

1

)

. �

2.1 Basic definitions

We now define some basic points and lines associated to a
parabolaP0 with foci f1 and f2, and directricesF1 ≡ f⊥1
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and F2 ≡ f⊥2 . The axis of the parabolaP0 is the line
A ≡ f1 f2. Theaxis point of P0 is the dual pointa≡ A⊥.
By assumption the axisA is a non-null line, so thata does
not lie onA.
If the axisA has null points, we shall call these theaxis
null points of P0, and denote them byη1 andη2, in no
particular order. The axis point and line will generally be
in black in our diagrams, while the axis null points will be
in yellow.
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Figure 4: Dual and tangent lines, twin point and focal
lines

Theorem 3 The axis A= f1 f2 of a hyperbolic parabola
P0 is a line of symmetry, and its dual point a is a center.

Proof. We denote the reflection of an arbitrary pointp0 ly-
ing onP0 in the axis lineA by rA (p0) = p0. Then we need
to prove thatp0 also lies onP0. Recall that the hyperbolic
reflection in a line (or equivalently the reflection in the dual
point of that line) is an isometry, so for any two pointsa
andb,

q(a,b) = q(rA (a) , rA (b)) .

Thus, sincef1, f2 are fixed byrA (they lie onA),

1= q( f1, p0)+q( f2, p0)

= q(rA (p0) , rA ( f1))+q(rA (p0) , rA ( f1))

= q(p0, f1)+q(p0, f2) .

This shows thatp0 lies on the parabolaP0. Since reflecting
p0 in A is the same as reflectingp0 in a, the pointa is also
the center of the parabola. �

The base pointsof P0 are the pointsb1 ≡ AF1 andb2 ≡

AF2. The dual linesB1 ≡ a f1 andB2 ≡ a f2 are thebase
lines of P0. Both base points and base lines will be shown
in blue in our diagrams.
Theverticesv1 andv2 are the points, if they exist, where
the parabola meets the axis; they are in no particular order.
The duals of the vertices are thevertex linesV1 ≡ v⊥1 and
V2 ≡ v⊥2 . The vertices and vertex lines will be shown in
black.

A generic point onP0 will be denotedp0, and itsdual line
denotedP0. Both are shown in black in our diagrams, with
often a small circle drawn aroundp0 to highlight it. The
tangent line to P0 at p0 will be denotedP0, and its dual
point p0 will be called thetwin point of p0. Both p0 and
P0 will be shown in grey.
The focal lines of p0 areR1 ≡ p0 f1 andR2 ≡ p0 f2, and
thealtitude base points ofp0 aret1 ≡ R1F1 andt2 ≡R2F2.
The duals of the focal lines are thefocal points r1 ≡ R⊥

1
andr2 ≡ R⊥

2 of p0. The duals of the focal base points are
the altitude base linesT1 ≡ t⊥1 andT2 ≡ t⊥2 of p0. The
focal lines and points will be shown in green in our dia-
grams. Figure 4 shows these various basic points and lines
associated to the parabolaP0.

2.2 Construction with a dynamic geometry program

It is helpful to have a construction of a hyperbolic parabola
that can be used with a dynamic geometry package, such
as Geometer’s Sketchpad, GeoGebra, C.a.R., Cinderella,
Cabri etc., used to create loci. For this it is helpful to re-
fresh our minds about the construction of the Euclidean
parabola, because a similar technique applies to construct
a hyperbolic parabola. We also mention some related facts
that will have analogs in the hyperbolic setting.
Firstly, we choose a pointF (focus), and a linef (direc-
trix), not passing throughF. Draw the perpendicular line
a (axis) toF through f . Using an arbitrary pointT on the
directrix f , construct the midpointM of the sideTF, and
draw the perpendicular linep to TF throughM. Finally,
the intersection of the altituder to f throughT and the line
p is a pointP on the parabolaP , which is then the locus of
the pointP asT moves onf , as in Figure 1.
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Figure 5: Construction of a hyperbolic parabolaP0

To construct a hyperbolic parabolaP0 from a pair of foci
f1 and f2 with axisA, we proceed as in the Euclidean case,
but we must be aware that the existence of midpoints is
more subtle–they may not exist, and when they do, there
are generally two of them! The situation is illustrated in
Figure 5; choose a pointt1 on the directrixF1 ≡ f⊥1 with
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the property that the sidet1 f2 has midpoints, call them

m1 andp0, with corresponding midlinesM1 =
(

m1
)⊥

and

P0 =
(

p0
)⊥

. One way of choosing such a pointt1 is to first
choose an arbitrary pointa1 onF1 and then reflectb1 ≡F1A
in a1 to obtaint1. In the triangleb1t1 f2, two sides now have
midpoints, so by Menelaus’ theorem ([17]) the third side
t1 f2 will also have midpoints.

Now construct the meetsp0 ≡P0R1 andn1 ≡M1R1, where
R1 = t1 f1. Then p0 and n1 will both be points on the
parabolaP0. The Figure also shows the symmetry avail-
able here: it is equally possible to choose a pointt2 on the
other directrixF2 ≡ f⊥2 with the property that the sidet2 f1
has midpoints, call themm2 and p0, with corresponding

midlinesM2 =
(

m2
)⊥

andP0 =
(

p0
)⊥

. In that case the
pointsp0 ≡ P0R2 andn2 ≡ M2R2, whereR2 = t2 f2, lie on
the parabolaP0. In Figure 5, the two pointst1 andt2 are
related by the fact thatt1t2 meets the axisA at the same
point j0 as doesP0; this accounts for the fact thatt1 f2 and
t2 f1 have a common midpointp0.

The justification for this construction will be given later,
after we establish a suitable framework for coordinates and
derive formulas for all the relevant points.

2.3 Dual conics and the connection with sydpoints

The theory of the hyperbolic parabola connects strongly
with thenotion of sydpointsas developed in [20].

The reason is that the sydpointsf 1 and f 2 of the sidef1 f2,
should they exist (and our assumptions on our field will
guarantee that they do) are naturally determined by the ge-
ometry ofP0, and then they become the foci for thetwin
parabolaP 0 (in orange in our diagrams), which turns out
to be the dual of the conicP0 with respect to the null cir-
cle C . The sydpoint symmetry between the sidesf1 f2 and
f 1 f 2 is key to understanding many aspects of these conics.
Although we will be studying the twin parabola more in
the next paper in this series, it will be useful to be aware of
it, as it explains some of our notational conventions.

In Figure 6, we see the parabolaP0 with foci f1, f2 and a
point p0 on it, as well as the twin parabolaP 0 with foci
f 1, f 2 and the twin pointp0 on it, which is the dual of the
tangentP0 to P0 at p0. Reciprocally the dual ofp0 is the
tangent toP 0 at p0. Note carefully that the tangents to
both the parabolaP0 and the null circleC at their common
meets, namely the null pointsα0 andα0, pass through the
foci of the twin parabolaP 0. Dually, note that the tangents
to both the parabolaP 0 and the null circleC at their com-
mon meets, namely the null pointsδ0 andδ0, pass through
the foci ofP0. This Figure also shows the twin directrices
F1 andF2, and the twin base pointsb1 andb2.
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Figure 6: The parabolaP0 and its twinP 0

3 Standard Coordinates and duality

3.1 The four basis null points

In order to bring a systematic treatment to the study of the
hyperbolic parabolaP0, we need an appropriate coordinate
system to bringP0 into as simple a form as possible. Al-
though there is a great deal of choice for such an attempt,
the one that we present here is the simplest and most ele-
gant we could find; in it the beauty of the parabolic theory
is reflected in an elegance and coherence in the correspond-
ing formulae.

The key point is that aside from the two focif1 and f2
which we used to define the parabola, there are four other
points which naturally lie on the parabola and which can
be used effectively as a basis for projective coordinates:
the two verticesv1 andv2, together with two null pointsα0

andα0 which are symmetrically placed with respect to the
axis.

We need to say some words about the existence of four
such points. A priori there is no guarantee that the axis
A meets the parabola; it will do so when the correspond-
ing quadratic equation formed by meeting the line with the
conic has a solution. The existence of the vertices is then
an assumptionthat we may justify by adjoining an alge-
braic square root, if required, to our field.

We will use the four pointsv1,v2,α0 and α0, no three
which are collinear, as a basis of a new projective coor-
dinate system.

Theorem 4 (Parabola vertices)If there is a non-null
point v1 lying both on the axis A and the parabolaP0, then
the perpendicular point v2 ≡ v⊥1 A also lies on both the axis
and the parabola, and these then are the only two points
with this property.
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Proof. Suppose thatv1 lies on the axisA≡ f1 f2 and on the
parabola. Then ifv1 is not a null point,

q( f1,v1)+q(v1, f2) = 1.

Definev2 ≡ v⊥1 A, so thatq(v1,v2) = 1. Now recall that
if a,b and c are collinear points withq(a,b) = 1, then
q(a,c) + q(c,b) = 1. So q(v1, f1) + q( f1,v2) = 1 and
q(v1, f2) + q( f2,v2) = 1. Combining all three equations
we see thatq( f1,v2)+q(v2, f2) = 1, showing thatv2 also
lies on the parabola. Since a line meets a conic at most at
two points, there can be no other points on the axis and on
P0. �

We can see from Figure 3 that a parabola need not neces-
sarily meet its axis. However any given line will meet a
given conic if we are allowed to augment the field to an
appropriate quadratic extension. So by possibly extend-
ing our field,we will henceforth assume that our parabola
P0 meets the axis A= f1 f2. By the above theorem, it then
meets this axis in exactly two points, which we call the
verticesof the parabola, and denote byv1 andv2.
What about the existence of null points onP0? The meet
of any two conics might have from zero to four points.
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Figure 7: The four basis points v1,v2,α0 andα0

The parabolaP0 with foci f1 and f2 need not meet the null
conic C . However for most examples, especially those
of interest to a classical geometer working in the Klein
model in the interior of the unit disk, we do have such
an intersection—at least approximately over the rational
numbers. So by possibly extending our field to a quartic
extension,we will henceforth assume that our parabola P0

passes through at least one null pointα0. By the assump-
tion in the previous theorem such a null pointα0 cannot
lie on the axis, so if we reflect it in the axis we get a sec-
ond null pointα0 ≡ ra (α0) which also lies onP0, since
P0 is invariant underra. Clearly no three of the fourbasis
points v1,v2,α0 andα0 are collinear, since they all lie on
the parabola.

3.2 The Fundamental theorem and standard coordi-
nates

We now invoke theFundamental Theorem of Projective
Geometry, which allows us to make a unique projective
change of coordinates so that the four basis points become

v1 = [0 : 0 : 1] v2 = [1 : 0 : 0]

α0 = [1 : 1 : 1] α0 = [1 :−1 : 1] .

It follows that

A= v1v2 = [0 : 0 : 1]× [1 : 0 : 0] = 〈0 : 1 : 0〉 .

These new coordinates will be calledstandard coordi-
nates for the parabolaP0, or parabolic standard coor-
dinates. Note carefully that the introduction of such new
coordinates will necessarily change the form of the quad-
rance and spread!
We now define, as in Figure 7, the points obtained by re-
flectingα0 andα0 in v2: namely

β0 ≡ rv2 (α0) and β0 ≡ rv2 (α0) .

Because reflection is an isometry, these are also null points.
Our notation with the overbar is something we will employ
consistently:α0 andα0 are reflections in the pointa, or
equivalently in the dual lineA, and so similarly forβ0 and
β0.

Theorem 5 (β points) We haveβ0 = (α0v2)(α0v1) and
β0 = (α0v2)(α0v1). Furthermore in the new coordinate
systemβ0 = [−1 : 1 : 1] andβ0 = [−1 :−1 : 1].

Proof. The quadrangle of null pointsα0α0β0β0 has one
diagonal pointv2, obviously from the definition ofβ0 and
β0. It has another diagonal pointa, because bothα0α0 and
β0β0 pass it; the first by construction and the second be-
cause it is obtained from the first by reflection inv2, which
lies onA = a⊥. So the third diagonal point is the dual of
av2, which isv1 by the previous theorem. It follows that
β0 = (α0v2)(α0v1) and β0 = (α0v2)(α0v1). Now we can
calculate that

β0 = ([1 : 1 : 1]× [1 : 0 : 0])× ([1 :−1 : 1]× [0 : 0 : 1])

= 〈0 : 1 :−1〉× 〈1 : 1 : 0〉= [−1 : 1 : 1]

β0 = ([1 :−1 : 1]× [1 : 0 : 0])× ([1 : 1 : 1]× [0 : 0 : 1])

= 〈0 : 1 : 1〉× 〈1 :−1 : 0〉= [−1 :−1 : 1] . �

When we apply a general projective transformation of the
projective plane to get the four pointsv1,v2,α0 and α0

into standard position, the metrical structure will change.
While we started with the symmetric matrixJ for the form,
the new symmetric matrix is of the formC = MJMT for
some invertible matrixM. However this matrixC is not
arbitrary; since we require that the four points lie on the
parabolaP0. We now arrive at the crucial result which sets

20



KoG•17–2013 A. Alkhaldi, N. J. Wildberger: The Parabola in Universal Hyperbolic Geometry I

up our coordinate system, and is the basis for all subse-
quent calculations. This is the fact that the new matrixC,
and its adjugateD, have a particularly simple form, de-
pending on a single parameterα which subsequently ap-
pears in almost all our formulas.

Theorem 6 (Parabola standard coordinates)The sym-
metric bilinear form in standard coordinates is given by
v1� v2 = v1CvT

2 where

C =





α2 0 0
0 1−α2 0
0 0 −1



 and

D = adj(C) =





α2−1 0 0
0 −α2 0
0 0 α2

(

1−α2
)



 (7)

for some numberα. In terms ofα, the parabolaP0 has
equation xz− y2 = 0 and its foci are

f1 = [α+1 : 0 :α(α−1)] and f2 = [1−α : 0 : α(α+1)] .

Proof. Suppose that our new bilinear form in standard co-
ordinates is given byv1� v2 = v1CvT

2 where

C =





a d f
d b g
f g c



 and

D = adj(C) =





bc−g2 f g− cd dg−b f
f g− cd ac− f 2 d f −ag
dg−b f d f−ag ab−d2



 .

The fact that the four pointsα0 = [1 : 1 : 1], α0 =
[1 : −1 : 1], β0 = [−1 : 1 : 1] andβ0 = [−1 :−1 : 1] must
all be null points means

α0CαT
0 = α0C(α0)

T = β0CβT
0 = β0C

(

β0

)T
= 0.

These conditions lead to the following linear system of
equations involving the entries ofC:

a+b+ c+2d+2 f +2g= 0

a+b+ c−2d+2 f −2g= 0

a+b+ c−2d−2 f +2g= 0

a+b+ c+2d−2 f −2g= 0.

From this we deduce thatd= f = g= 0, anda=−(b+ c).
So the matrices have the form, up to scaling, of:

C =





a 0 0
0 1−a 0
0 0 −1



 and

D =





a−1 0 0
0 −a 0
0 0 −a(a−1)



 .

But there is also the condition thatP0 is a parabola
with foci f1 and f2, passing through all four basis points
v1 = [0 : 0 : 1] ,v2 = [1 : 0 : 0] ,α0 = [1 : 1 : 1] and α0 =
[1 : −1 : 1]. Since the foci lie on the axisA= v1v2, we can
write f1 = [m1 : 0 : 1] and f2 = [m2 : 0 : 1] for somem1,m2.
Then recall that the quadrance and spread are determined
by the projective matricesC andD by the rules (5).
We then compute

q( f1, f2) = 1−
(am1m2−1)2

(

am2
1−1

)(

am2
2−1

)

=−a
(m1−m2)

2

(

am2
2−1

)(

am2
1−1

) .

Since f1 and f2 are by assumption not perpendicular,

am1m2−1 6= 0. (8)

Also v1 andv2 lie on P0, so that

q([m1 : 0 : 1] , [0 : 0 : 1])+q([m2 : 0 : 1] , [0 : 0 : 1])−1

=
(am1m2−1)(am1m2+1)
(

am2
2−1

)(

am2
1−1

) = 0 and

q([m1 : 0 : 1] , [1 : 0 : 0])+q([m2 : 0 : 1] , [1 : 0 : 0])−1

=−
(am1m2−1)(am1m2+1)
(

am2
1−1

)(

am2
2−1

) = 0.

Both these conditions, given (8), are equivalent to the rela-
tion

am1m2+1= 0 (9)

which we henceforth assume, implying that we may write

m1 = m and m2 =−
1

am

for some non-zero numberm.
In addition we must ensure thatα0 andα0 lie on P0, but
since these are both null points, the quadrancesq( f1,α0)
andq( f2,α0) etc. are undefined, and we must rather work
with the general equation of the parabola. This is

q([m : 0 : 1] , [x : y : z])+q

([

−
1

am
: 0 : 1

]

, [x : y : z]

)

−1

=
4amxz− y2(a−1)

(

am2−1
)

(am2−1)(ax2−ay2+ y2− z2)
= 0

which shows the equation of the parabola to be

4amxz− y2(a−1)
(

am2
−1
)

= 0. (10)

Now the condition thatα0 = [1 : 1 : 1] andα0 = [1 :−1 : 1]
lie onP0 is that

4am− (a−1)
(

am2
−1
)

= a(1−a)m2+4am+(a−1)

= 0. (11)
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Given that we started out with the existence off1 and f2 as-
sumed, we see that the discriminant of this quadratic equa-
tion

(4a)2−4a(1−a)(a−1) = 4a(a+1)2

must be a square. But this occurs precisely whena is a
square, say

a= α2.

In this case the quadratic equation (11) has the form
α2
(

1−α2
)

m2+4α2m+
(

α2−1
)

= 0 with solutions

m= m1 =
1+α

α(α−1)
and m2 =

1−α
α(α+1)

.

Combining these with (10), the identity

4α2 (α+1)
α(α−1)

xz− y2(α2
−1
)

(

α2
(

1+α
α(α−1)

)2

−1

)

=
4
(

xz− y2
)

α(α+1)

α−1
= 0

shows that the equation of the parabola pleasantly simpli-
fies to be

xz− y2 = 0. (12)

The foci may now be expressed as

f1 = [m1 : 0 : 1] = [α+1 : 0 :α(α−1)] and

f2 = [m2 : 0 : 1] = [1−α : 0 : α(α+1)] . �

Notice that

det





α2 0 0
0 1−α2 0
0 0 −1



= α2 (α−1)(α+1) 6= 0

soα 6= 0,±1, sinceC is an invertible projective matrix.
The following Figure shows a view in the standard coor-
dinate plane, where[x : y : 1] is represented by the affine
point[x,y]. This corresponds roughly to a value ofα= 0.3.
While it is both interesting and instructive to see different
views of such a standard coordinate plane, this is some-
what unfamiliar to the classical geometer, so we will stick
mostly to the Universal Hyperbolic Geometry model for
our diagrams, where the unit circle always appears in blue
as the unit circlex2+ y2 = 1.
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Figure 8: A standard coordinate view of a parabola

Theorem 7 (Parabola quadrance)Thequadrance of the
parabola is

qP0 ≡ q( f1, f2) =

(

α2+1
)2

4α2 .

Proof. We compute that

qP0 = q([α+1 : 0 :α(α−1)] , [1−α : 0 : α(α+1)])

=
1

4α2 (α−1)2 (α+1)2+1=

(

α2+1
)2

4α2 . �

We note thatqP0 is a square. This is a reflection of the fact
that the assumption of the existence of vertices implies that
the sidesf1b2 and f2b1 have midpoints, see the Midpoint
theorem [17].
The condition for points and lines to be null, in other words
the equation for the null circle, is the following in standard
coordinates.

Theorem 8 (Null points/ lines) The point p= [x : y : z] in
standard coordinates is a null point precisely when

α2x2+
(

1−α2)y2
− z2 = 0.

The line L= 〈l : m : n〉 is a null line precisely when

(

1−α2) l2+α2m2+α2(α2
−1
)

n2 = 0.

Proof. These follow by using (7) to expand the respective
conditions

[x : y : z]C [x : y : z]T = 0 and

〈l : m : n〉T D〈l : m : n〉= 0. �

3.3 Quadrance and spread in standard coordinates

We can now give explicit formulas for quadrance and
spread in standard coordinates.
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Theorem 9 (Quadrance formula) The quadrance be-
tween the points p1 = [x1 : y1 : z1] and p2 = [x2 : y2 : z2]
in parabolic standard coordinates is

q(p1, p2) =

−

(x1y2−x2y1)
2α4+

(

(x1z2−x2z1)
2
−(y1z2−y2z1)

2
−(x1y2−x2y1)

2
)

α2+(y1z2−y2z1)
2

(

α2x2
1−y2

1 (α2−1)−z2
1

)(

α2x2
2−y2

2 (α2−1)−z2
2

) .

Proof. From (4) and formula (7) forC,

[x1,y1,z1]C [x2,y2,z2]
T = α2x1x2− y1y2

(

α2
−1
)

− z1z2.

The formula follows using an identity calculation. �

Theorem 10 (Spread formula) The spread between L1 =
〈l1 : m1 : n1〉 and L2 = 〈l2 : m2 : n2〉 is

S(L1,L2)

=

(

(l1n2− l2n1)
2
− (m1n2−m2n1)

2
)

α2+
(

(l1m2− l2m1)
2
− (l2n1− l1n2)

2
)

(

l2
1 (α2−1)−α2m2

1−α2n2
1 (α2−1)

)(

l2
2 (α2−1)−α2m2

2−α2n2
2 (α2−1)

) .

Proof. From (4) and

[l1,m1,n1]D [l2,m2,n2]
T

= l1l2
(

α2
−1
)

−α2m1m2−α2(α2
−1
)

n1n2

the formula follows using an identity calculation. �

Theorem 11 (Axis reflection) The reflection ra in the
point a has the form

ra ([x : y : z]) = [x : −y : z] .

Proof. We use the usual formula for reflection in a vector:

rv (u) = 2
(u ·v)v

v ·v
−u= 2

(

uCvT
)

v

vCvT −u.

With the matrixC above, and working with regular vectors,
we get

r[0,1,0] ([x,y,z]) = 2
[0,1,0]C[x,y,z]T

[0,1,0]C[0,1,0]T
[0,1,0]− [x,y,z]

= [−x,y,−z] = [x,−y,z] . �

3.4 Duality with respect to a conic and parametriza-
tions

Let’s recall some basic facts from the general theory of
points and tangents to a projective conic. Suppose that
a general conicC is given by the projective symmetric
3× 3 matrix A, with adjugateB, so that a general point
p = [x : y : z] lies on C precisely whenpApT = 0. The
tangent lineP to a pointp lying on C is P = p⊥ ≡ ApT .
Dually, the point at which a tangent lineL meets the conic
is l = L⊥ ≡ LTB. While a pointp on the conic satisfies
the equationpApT = 0, a lineL on the conic (that is, a
tangent line to the conic at some point) satisfies the dual

equationLTBL = 0 (where we regard lines as projective
column vectors).

More generally, we can regard the projective matrixA as
determining a projective bilinear form, which is equivalent
to a duality between points and lines. For a general point
p, not necessarily lying onC , its dual with respect toC

is the linep⊥ = ApT , while for a general pointL, its dual
with respect toC is the pointL⊥ = LTB. These are inverse
procedures.

These notions of course go back to Apollonius, and it could
be argued that this duality between points and lines is the
essential feature or characteristic of a conic. But this mod-
ern formulation in the language of linear algebra and matri-
ces makes many of its aspects much easier to understand,
see [3], [12].

In this work, the main example of duality is with respect
to the null circleC , for which we will stick with the nota-
tion that if x j is a point, thenXj = CxT

j refers to the dual
line and conversely. However the secondary duality with
respect to the parabolaP0 will also be involved, as we now
see.

The equation (12) for the parabolaP0 in standard coordi-
nates, namelyp(x,y,z) = xz− y2 = 0, can be expressed in
homogeneous matrix form aspApT = 0 or

[

x y z
]

A
[

x y z
]T

= 0

where

A =





0 0 1
0 −2 0
1 0 0



 and adj(A)≡ B =





0 0 2
0 −1 0
2 0 0



 .

Theorem 12 (Parabola parametrization) The parabola
P0 is parametrized, using an affine parameter t, by p0 =
[

t2 : t : 1
]

≡ p(t) or by using a projective parameter[t : r]
as p0 =

[

t2 : tr : r2
]

≡ p(t : r). The tangent line P0 to the
parabola at p0 =

[

t2 : t : 1
]

is P0 =
〈

1 :−2t : t2
〉

≡ P(t)
or projectively the tangent to p0 =

[

t2 : tr : r2
]

is P0 =
〈

r2 : −2rt : t2
〉

≡ P(t : r). A line L= 〈l : m : n〉 is tangent
to the parabola precisely when m2 = 4nl.

Proof. The simple form of the equationxz= y2 makes the
parametrization immediate. The formula for the tangent
line is a direct application of the discussion above, so that

P0
≡ ApT

0 =





0 0 −1
0 2 0
−1 0 0





[

t2 t 1
]T

=





1
−2t
t2





=
〈

1 :−2t : t2〉
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or using projective parameters

P0
≡ ApT

0 =





0 0 −1
0 2 0
−1 0 0





[

t2 tr r 2
]T

=





r2

−2rt
t2





=
〈

r2 : −2rt : t2〉 .

The relationm2 = 4nl is exactly satisfied by those lines of
this form. �

Theorem 13 (Tangent meets)If p0 ≡ p(t) and q0 ≡ p(u)
are two distinct points onP0, then their tangents P0 and
Q0 meet at thepolar point z ≡ P0Q0 = [2tu : t +u : 2]
while Z≡ p0q0 = 〈1 :−(t + v) : tv〉.

Proof. We compute that

z≡P0Q0 =
〈

1 :−2t : t2〉
×
〈

1 :−2u : u2〉= [2tu : t +u : 2]

and
p0q0 =

[

t2 : t : 1
]

×
[

v2 : v : 1
]

= 〈1 :−(t + v) : tv〉 . �

The projective parametrization ofP0 has the advantage
that it includes the important point at infinityp(1 : 0) =
[1 : 0 : 0] = v2. We can recover the affine parametrization
by settingr = 1, and we can go from the affine to the pro-
jective parametrization by replacingt with t/r and clearing
denominators. In practice we will generally use the affine
parametrization, since it is requires only one variable, not
two. The existence of this simple parametrization will be
extremely useful for us: giving us the same amount of con-
trol over the hyperbolic parabola as we have over the much
simpler Euclidean parabola (which of course can be posi-
tioned to have exactly the same equation!)

Theorem 14 The dual of the point p0 =
[

t2 : t : 1
]

on P0 is P0 =
〈

t2α2 : t
(

1−α2
)

: −1
〉

. The dual
of the tangent line P0 =

〈

1 :−2t : t2
〉

is p0 =
[

α2−1 : 2tα2 : −t2α2
(

α2−1
)]

.

Proof. We compute that

P0 = CpT
0 =





α2 0 0
0 1−α2 0
0 0 −1





[

t2 t 1
]T

=
〈

t2α2 : t
(

1−α2) : −1
〉

and

p0 =
(

P0)T
D =

[

1 −2t t2
]





α2−1 0 0
0 −α2 0
0 0 α2

(

1−α2
)





=
[

α2
−1 : 2tα2 : −t2α2(α2

−1
)]

. �

We will say thatp0 is thetwin point to p0. Later we will
see that the locus ofp0 is also a parabola, whose focif 1

and f 2 are the sydpoints off1 f2.

Theorem 15 (Focus directrix polarity) The focus f1 is
the pole of the directrix F2 with respect to the parabola
P0, and similarly the focus f2 is the pole of the directrix
F1.

Proof. We check that

FT
2 B=

[

α(α−1) 0 α+1
]

B=[α+1 : 0 :α(α−1)]= f1
or

A f T
1 =A

[

α+1 0 α(α−1)
]T
=〈α(α−1) : 0 : α+1〉=F2.

Similarly,

FT
1 B=

[

α(α+1) 0 1−α
]

B=[−(α−1) : 0 : α(α+1)]= f2
or

A f T
2=A

[

1−α 0 α(α+1)
]T

= 〈α(α+1) : 0 : 1−α〉=F1.

�

In order for the parabolay2 = xz to have a null pointp(t),

the parametert must satisfy
[

t2 : t : 1
]

C
[

t2 : t : 1
]T

= 0,
which yields

(

t2−1
)(

t2α2+1
)

= 0. Over the rational
field, the valuest = ±1 agree with the null pointsα0 =
[1 : 1 : 1] andα0 = [1 :−1 : 1] with which we begun our
work.
However, there are also another two solutions which are in-
visible over the rational field, but exist in an extension field
obtained by adjoining a square rooti of −1. These points
areζ1 ≡

[

1 : iα : −α2
]

andζ2 ≡
[

1 :−iα : −α2
]

. In this
paper we will not mention these points too much.

3.5 Formulas for directrices, vertex lines, base points
and base lines

We can now augment our formulas using standard coordi-
nates. The directrices are

F1 ≡ f⊥1 =C [α+1 : 0 :α(α−1)]T=〈α(α+1) : 0 : 1−α〉

F2 ≡ f⊥2 =C [1−α : 0 : α(α+1)]T=〈α(α−1) : 0 : 1+α〉.

The base points are the meets of the directrices and the axis
line. They are

b1 ≡ F1A=
〈

α2 (α+1) : 0 : α(1−α)
〉

×〈0 : 1 : 0〉

= [α−1 : 0 :α(α+1)]

b2 ≡ F2A=
〈

α2 (α−1) : 0 : α(1+α)
〉

×〈0 : 1 : 0〉

= [α+1 : 0 :α(1−α)] .

The duals are thebase linesB1,B2, which are the altitudes
to the axisA through the focif1, f2 of the parabola:

B1 ≡ b⊥1 = C [(α−1) : 0 : α(α+1)]

= 〈−α(α−1) : 0 : α+1〉

B2 ≡ b⊥2 = C [(α+1) : 0 : α(1−α)]
= 〈α(α+1) : 0 : α−1〉 .
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The vertex lines V1, V2 are the altitudes to the axisA
through the verticesv1, v2 of the parabola:

V1 ≡ v⊥1 = C [0 : 0 : 1] = [0 : 0 : 1] and

V2 ≡ v⊥2 = C [1 : 0 : 0] = [1 : 0 : 0] .
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Figure 9: Some basic points associated to a parabolaP0

3.6 The j, h and d points and lines

We define theaxis null points to be the meets of the axisA
and the null conicC. These points exist under our assump-
tions, and are

η1 ≡ AC = [1 : 0 :α] and η2 = AC = [−1 : 0 :α] .

We now introduce some other secondary points and lines
associated to a generic pointp0 on the parabolaP0. The re-
flection ofp0 =

[

t2 : t : 1
]

in the axis is theopposite point

p0 = ra (p0) =
[

t2 : −t : 1
]

.

Clearly p0 also lies on the parabola.
The meet of the dual lineP0 with the axisA is the j-point

j0≡P0A=
〈

t2α2 : t
(

1−α2) :−1
〉

×〈0:1:0〉=
[

1 : 0 : t2α2]

with dual theJ-line

J0 = ap0 = [0 : 1 : 0]×
[

t2 : t : 1
]

=
〈

1 : 0 :−t2〉 .

By dualityJ0 is the altitude fromp0 to the axis, and so also
J0 = p0p0. The meet of theJ-line with the axis is the foot
of this altitude; it is theh-point

h0 ≡ AJ0 = 〈0 : 1 : 0〉×
〈

1 : 0 :−t2〉=
[

t2 : 0 : 1
]

and its dual is theH-line

H0≡ h⊥0 = a j0= [0 : 1 : 0]×
[

1 : 0 :t2α2]=
〈

t2α2 : 0 :−1
〉

.

The meet of the tangent lineP0 with the axis is thetwin
j-point

j0 ≡ P0A=
〈

1 :−2t : t2〉
×〈0 : 1 : 0〉=

[

−t2 : 0 : 1
]

with dual thetwin J-line

J0=ap0=[0:1:0]×
[

α2
−1:2tα2:−t2α2(α2

−1
)]

=
〈

t2α2:0 :1
〉

.

The meet of the twinJ-line with the axis is thetwin h-
point

h0
≡ AJ0 = 〈0 : 1 : 0〉×

〈

t2α2 : 0 : 1
〉

=
[

−1 : 0 :t2α2]

and its dual is thetwin H-line

H0
≡
(

h0)⊥ = a j0= [0 : 1 : 0]×
[

−t2 : 0 : 1
]

=
〈

1 : 0 :t2〉 .
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Figure 10:The j and h points and lines

Theorem 16 (Null tangent) The tangent P0 to the
parabola P0 at p0 is a null line precisely when p0 lies
on a directrix, and in this case the twin point p0 is a null
point lying on the other directrix, j0 coincides with a focus,
and j0 with the other focus.

Proof. If the tangentP0 =
〈

1 :−2t : t2
〉

at p0 =
[

t2 : t : 1
]

is a null line, then by the Null points/lines theorem

(

1−α2)+4α2t2+α2(α2
−1
)

t4 = 0.

This factors as

(

α(α+1)t2
− (α−1)

)(

α(α−1)t2+(α+1)
)

= 0

so that

t2 =
α−1

α(α+1)
or t2 =−

α+1
α(α−1)

. (13)

Now p0 =
[

t2 : t : 1
]

is on the directrixF1 or F2, precisely
when

[

t2 : t : 1
][

α2 (α+1) : 0 : α(1−α)
]T

= 0 or
[

t2 : t : 1
][

α2 (α−1) : 0 : α(1+α)
]T

= 0
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and similarly, the pointp0=
[

α2−1: 2tα2 : −t2α2
(

α2−1
)]

is on the directrixF1 or F2, precisely when

[

α2
−1: 2tα2 : −t2α2(α2

−1
)][

α2 (α+1) : 0 : α(1−α)
]T
=0

or
[

α2
−1: 2tα2 : −t2α2(α2

−1
)][

α2 (α−1) : 0 : α(1+α)
]T
=0.

These conditions are exactly the same as (13). Using (13)
we get eitherj0 =

[

1 : 0 : t2α2
]

= [α+1 : 0 :α(α−1)] =
f1 and j0 =

[

−t2 : 0 : 1
]

= [1−α : 0 : α(α+1)] =

f2 or j0 = [1−α : 0 : α(α+1)] = f2 and j0 =
[α+1 : 0 :α(α−1)] = f1. �
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We introduce the pointsd0 andd0 to be the meets of the di-
rectrix F2 with the parabolaP0, should they exist, and the
corresponding twin null pointsδ0 andδ0 lying on the di-
rectrixF1. These are important canonical points associated
with the parabola. Since their existence requires solutions
to (13), and so a numberτ satisfyingτ2 = α

(

α2−1
)

, we
may write

d0 = F2P0 = [α−1 : τ : α(α+1)]

d0 = F2P0 = [α−1 :−τ : α(α+1)]

and

d0
≡ δ0 =

[

(α−1)2 (α+1) : −2αiτ : α(α+1)2 (α−1)
]

d0 = δ0 =
[

(α−1)2 (α+1) : 2αiτ : α(α+1)2 (α−1)
]

where(iτ)2 =−α
(

α2−1
)

.

In Figure 11, notice that the linesf1δ0 and f1δ0 are joint
tangents to bothC and the parabolaP0, touchingP0 at the
pointsd0 andd0.

3.7 The sydpoints of a parabola

It is a remarkable fact that the theory of sydpoints that we
developed in [20] plays a crucial role in the theory of the

parabola. Define the lines

F2
≡ α0α0 = [1 : 1 : 1]× [1 :−1 : 1] = 〈1 : 0 :−1〉

B1
≡ β0β0 = [−1 : 1 : 1]× [−1 :−1 : 1] = 〈1 : 0 : 1〉

with corresponding axis meets

b2
≡ F2A= 〈1 : 0 :−1〉× 〈0 : 1 : 0〉= [1 : 0 : 1]

f 1
≡ B1A= 〈1 : 0 : 1〉× 〈0 : 1 : 0〉= [−1 : 0 : 1] .

The duals of these points and lines are

f 2
≡
(

F2)⊥ =
[

1 0 −1
]

D =
[

1 : 0 :α2]

b1
≡
(

B1)⊥ =
[

1 0 1
]

D =
[

1 : 0 :−α2]

B2
≡
(

b2)⊥ = C
[

1 0 1
]T

=
〈

−α2 : 0 : 1
〉

F1
≡
(

f 1)⊥ = C
[

−1 0 1
]T

=
〈

α2 : 0 : 1
〉

.

The pointsf 1 and f 2 are thetwin foci , or t-foci for short,
of the parabolaP0. They will play a major role in the the-
ory. The dual lines off 1 and f 2, namelyF1 andF2 re-
spectively, are thet-directrices of P0. The meets of the
t-directrices and the axisA are F1A ≡ b1 and F2A ≡ b2

respectively; these are thet-base pointsof P0. The dual
lines ofb1 andb2, namelyB1 andB2 respectively, are the
t-base linesof P . These are all shown in Figure 12.
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Figure 12: Sydpoints and the twin foci f1 and f2 of P0

Theorem 17 (Parabola sydpoints)The points f1 and f2

are the sydpoints of the sidef1 f2.

Proof. We calculate that

q
(

f1, f 1)= q([α+1 : 0 :α(α−1)] , [1 : 0 :−1])

= 1+

(

α(α−1)+α2 (α+1)
)2

4α3−4α5 =−

(

α2+1
)2

4α(α2−1)

q
(

f2, f 1)= q([1−α : 0 : α(α+1)] , [1 : 0 :−1])

= 1−

(

α(α+1)−α2 (α−1)
)2

4α3−4α5 =

(

α2+1
)2

4α(α2−1)
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q
(

f1, f 2)= q
(

[α+1 : 0 : α(α−1)] ,
[

1 : 0 :α2])

= 1−

(

α2 (α+1)−α3 (α−1)
)2

4α5−4α7 =
1
4

(

α2+1
)2

α(α2−1)

q
(

f2, f 2)= q
(

[1−α : 0 : α(α+1)] ,
[

1 : 0 :α2])

= 1+

(

α2(α−1)+α3(α+1)
)2

4α5−4α7 =−
1
4

(

α2+1
)2

α(α2−1)
.

Clearly q
(

f1, f 1
)

= −q
(

f2, f 1
)

and q
(

f1, f 2
)

=

−q
(

f2, f 2
)

so f 1 and f 2 are the sydpoints of the side
f1 f2. �

Theorem 18 (Parabola null tangents)The tangents to
the null circle atα0 and α0 meet at f2. The tangents to
P0 at α0 andα0 meet at f1.

Proof. The tangents to the null circle atα0 andα0 are the
dual lines

α⊥
0 =C[1 : 1 : 1]T =

〈

α2 : 1−α2 : −1
〉

and

(α0)
⊥ =C[1 : −1 : 1]T =

〈

α2 : α2
−1 :−1

〉

and these meet at

α⊥
0 (α0)

⊥ =
〈

α2 : 1−α2 : −1
〉

×
〈

α2 : α2
−1 :−1

〉

=
[

1 : 0 :α2]= f 2.

The tangents to the parabolaP0 at α0 andα0 are the lines

A
[

1 1 1
]T

=〈1:−2: 1〉 and A
[

1 −1 1
]T

=〈1: 2: 1〉

and these meet at
〈1 :−2 : 1〉× 〈1 : 2 : 1〉= [−1 : 0 : 1] = f 1. �

3.8 A rational parabola

In this section we show the existence of a two-parameter
family of rational hyperbolic parabolas, and give the asso-
ciated transformations to parabolic standard coordinates.
The conicP0 with equation

(

t2
1t2

2 −1
)

x2+2
(

t2
1t2

2 +1
)

x+
(

t2
1 − t2

2

)

y2+
(

t2
1t2

2 −1
)

= 0

meets the null circle at the null pointsα0 =
[

1− t2
1 : 2t1 : t2

1 +1
]

andα0 =
[

1− t2
1 : −2t1 : t2

1 +1
]

. This
is a parabola with foci
f1 =

[

t1+ t2− t1t2
2 + t2

1t2 : 0 : t1+ t2+ t1t2
2 − t2

1t2
]

and
f2 =

[

t1− t2− t1t2
2 − t2

1t2 : 0 : t1− t2+ t1t2
2 + t2

1t2
]

, axis
A= 〈0 : 1 : 0〉, and t-foci f 1 =

[

t2
1 +1 : 0 :−

(

t2
1 −1

)]

and
f 2 =

[

t2
2 −1 : 0 :−

(

t2
2 +1

)]

. The null pointsβ0,β0 are

β0 =
[

1− t2
2 : 2t2 : t2

2 +1
]

andβ0 =
[

1− t2
2 : −2t2 : t2

2 +1
]

,
and the vertices arev1 = [t1t2−1 : 0 :−(t1t2+1)] and

v2 = [t1t2+1 : 0 :−(t1t2−1)]. Note that

q
(

f 1, f 2)
−1

= q
([

t2
1 +1 : 0 :−

(

t2
1 −1

)]

,
[

t2
2 −1 : 0 :−

(

t2
2 +1

)])

−1

=
1
4
(t1− t2)

2 (t1+ t2)
2

t2
1t2

2

is a square.
We are now interested in sending these pointsα0,α0,β0,β0

to the points[1 : 1 : 1] , [1 :−1 : 1] , [−1 : 1 : 1] , [−1 :−1 : 1]
respectively, using a projective transformation. Firstly,
we send [1 : 1 : 1] , [1 : 0 : 0] , [0 : 1 : 0] , [0 : 0 : 1] to
α0,α0,β0,β0 respectively by the linear transformation
T1 (v) = vN whereN is

N =





−t2
(

t2
1 −1

)

−2t1t2 t2
(

t2
1 +1

)

−t1
(

t2
2 −1

)

2t1t2 t1
(

t2
2 +1

)

t1
(

t2
2 −1

)

2t1t2 −t1
(

t2
2 +1

)



 .

Its inverse sendsα0,α0,β0,β0 back to[1 : 1 : 1], [1 : 0 : 0],
[0 : 1 : 0], [0 : 0 : 1] by T (v) = vRwhereR is the adjugate
of N :

R=





−2t1
(

t2
2 +1

)

(t1− t2)(t1t2−1) −(t1t2+1)(t1+ t2)
0 t2

1 − t2
2 t2

1 − t2
2

−2t1
(

t2
2 −1

)

(t1− t2)(t1t2+1) −(t1t2−1)(t1+ t2)



.

Secondly, the linear transformationT2 (v) = vM, whereM
is

M =





1 −1 1
−1 1 1
1 1 −1



 ,

sends[1 : 1 : 1], [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] to [1 : 1 : 1],
[−1 : 1 : 1], [−1 : 1 : 1], [−1 :−1 : 1] respectively. Thus,
the required transformation isT (v) = v(RM) whereRM is




−(t1t2+1)(t1+ t2) 0 (t1− t2) (t1t2−1)
0 (t1− t2)(t1+ t2) 0

−(t1t2−1)(t1+ t2) 0 (t1− t2) (t1t2+1)



.

After applying this linear transformation, the matrixJ is
replaced by

C = (RM)−1J
(

(RM)−1
)T

=





t1t2 (t1− t2)
2 0 0

0 4t2
1t2

2 0
0 0 −t1t2 (t1+ t2)

2



 and

D = (RM)T J(RM)

=







4t1t2 (t1+ t2)
2 0 0

0
(

t2
1 − t2

2

)2
0

0 0 −4t1t2 (t1− t2)
2






.
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and we get α = t1−t2
t1+t2

. In this new coor-

dinate system, the parabola isy2 = xz with
foci f1 = [t1 (t1+ t2) : 0 :−t2(t1− t2)] and f2 =
[t2 (t1+ t2) : 0 : t1 (t1− t2)].

Example 1 If t1 = 1/2 and t2 = 3 then the parabolaP0

has equation26x+ 5x2 − 35y2 + 5 = 0 which meets the
null circle at the null pointsα0 = [3 : 4 : 5] and α0 =
[3 : −4 : 5]; has axis A= 〈0 : 1 : 0〉, foci f1 = [−1 : 0 : 29]
and f2 = [−31 : 0 : 11], vertices v1 = [1 : 0 :−5] and v2 =
[5 : 0 :−1] , t-foci f1 = [5 : 0 : 3] and f2 = [4 : 0 :−5], and
β0 = [−4 : 3 : 5] andβ0 = [4 : 3 :−5].

3.9 Focal and base lines

We now define some other fundamental points and lines
associated with a pointp0 ≡

[

t2 : t : 1
]

on the parabolaP0.
It will be convenient to introduce the quantities

∆1 (t)≡ α+1+ t2α− t2α2

∆2 (t)≡ α−1+ t2α+ t2α2

∆3 (t)≡ α+1− t2α+ t2α2

∆4 (t)≡ α−1− t2α2
− t2α

which depends ont, and so onp0, and which will appear
in many formulas to follow. Notice that

∆2
1−∆2

2=−4α
(

t2α2
−1
)(

t2+1
)

, ∆2
1−∆2

3=−4αt2(α2
−1
)

∆2
1−∆2

4=−4α
(

t4α2
−1
)

, ∆2
2−∆2

3= 4α
(

t4α2
−1
)

∆2
2−∆2

4=4t2α
(

α2
−1
)

, ∆2
3−∆2

4=−4α
(

t2
−1
)(

t2α2+1
)

.

The focal linesR1,R2 and the dualfocal line points r1, r2

are defined by, and calculated as:

R1 ≡ f1p0 = [α+1 : 0 :α(α−1)]×
[

t2 : t : 1
]

= 〈tα(α−1) : ∆1 : −t (α+1)〉

R2 ≡ f2p0 = [1−α : 0 : α(α+1)]×
[

t2 : t : 1
]

= 〈tα(α+1) : −∆2 : t (α−1)〉

r1 ≡ R⊥
1 = F1P0

=
[

t (α−1)2 (α+1) : −α∆1 : tα(α−1)(α+1)2
]

r2 ≡ R⊥
2 = F2P0

=
[

t (α−1)(α+1)2 : α∆2 : −tα(α−1)2 (α+1)
]

.

SinceR1,R2 andP0 are concurrent atp0, dually we see that
r1, r2 andp0 are collinear onP0.
The altitude base pointst1 and t2 and the dualaltitude
base linesT1,T2 are defined by, and calculated as:

t1 ≡ F1R1 =
[

(α−1)∆1 : 4tα2 : α(α+1)∆1
]

t2 ≡ F2R2 =
[

(α+1)∆2 : 4tα2 : −α(α−1)∆2
]

T1 ≡ t⊥1 = f1r1=
〈

α(α−1)∆1 : −4tα
(

α2
−1
)

:−(α+1)∆1
〉

T2 ≡ t⊥2 = f2r2=
〈

α(α+1)∆2 : −4tα
(

α2
−1
)

: (α−1)∆2
〉

.

The focal linesR1 andR2 also meet the directrices at the
second altitude base pointsu1,u2, with dual linesU1,U2:

u1 ≡ R2F1 =
[

(α−1)∆2 : 2tα
(

α2
−1
)

: α(α+1)∆2
]

u2 ≡ R1F2 =
[

−(α+1)∆1 : 2tα
(

α2
−1
)

: α(α−1)∆1
]

U1 ≡ u⊥1 =
〈

α(α+1)∆1 : 2t
(

α2
−1
)2

: (α−1)∆1

〉

U2 ≡ u⊥2 =
〈

−α(α−1)∆2 : 2t
(

α2
−1
)2

: (α+1)∆2

〉

.

f

f

p

p

P

P

b b
r

r

s

s

t

t

2

1

1 2

2

1

1

2

1

2

1

2

1

2

1

2

1

S

T

T

R

F

S

R

A

0

0

0

0

0PC

v v1
2

2F

j j0
0

w

w

1

2

u

u

2

1

Figure 13:The r,s, t and w points of p0 on P0

The t-base linesS1,S2 and their duals thet-base points
s1,s2 are defined by, and calculated as:

S1 ≡ f1t2 =
〈

−2tα2(α−1) :
(

α2
−1
)

∆2 : 2tα(α+1)
〉

S2 ≡ f2t1 =
〈

2tα2(α+1) : −
(

α2
−1
)

∆1 : 2tα(α−1)
〉

s1 ≡ S⊥1 = F1T2 = [2t (α−1) : ∆2 : 2tα(α+1)]

s2 ≡ S⊥2 = F2T1 = [2t (α+1) : ∆1 : −2tα(α−1)] .

Theorem 19 (T-base)Both s1 and s2 lie on the tangent
P0. Dually the lines S1 and S2 meet at p0.

Proof. We verify thats1 ands2 lie on the tangentP0 =
〈

1 :−2t : t2
〉

by computing

[2t (α−1) : ∆2 : 2tα(α+1)]
[

1 :−2t : t2]T = 0

[2t (α+1) : ∆1 : −2tα(α−1)]
[

1 :−2t : t2]T = 0.

The statement thatS1 andS2 meet atp0 follows from du-
ality. �

The w-points w1 andw2, and their dualsW1 andW2, are
defined and computed as:

w1 ≡ F1S1=
[(

α2
−1
)

(α−1)∆2 :−8tα3 : α
(

α2
−1
)

(α+1)∆2
]

w2 ≡ F2S2=
[(

α2
−1
)

(α+1)∆1 : 8tα3 :−α
(

α2
−1
)

(α−1)∆1
]

W1 ≡ f1s1 =
(

α(α−1)∆2 : 8tα2 : −(α+1)∆2
)

W2 ≡ f2s2 =
(

α(α+1)∆1 : −8tα2 : (α−1)∆1
)

.
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Theorem 20 (J points collinearities) We have collineari-
ties

[[

t1t2 j0
]]

, [[ j0u1u2]] and[[w1w2 j0]].

Proof. Using the various formulas above, we compute

det





(α−1)∆1 4tα2 α(α+1)∆1

(α+1)∆2 4tα2 −α(α−1)∆2

−t2 0 1



= 0,

det





1 0 t2α2

−(α+1)∆1 2tα
(

α2−1
)

α(α−1)∆1

(α−1)∆2 2tα
(

α2−1
)

α(α+1)∆2



= 0

and

det





(

α2−1
)

(α−1)∆2 −8tα3 α
(

α2−1
)

(α+1)∆2
(

α2−1
)

(α+1)∆1 8tα3 −α
(

α2−1
)

(α−1)∆1

1 0 t2α2





= 0. �

Theorem 21 (Null focal line) The focal line R1 of a point
p0 on the parabolaP0 is a null line precisely when∆3 = 0.
Similarly, the focal line R2 is a null line precisely when
∆4 = 0.

Proof. By the Null points/lines theorem, the focal line
R1 = 〈tα(α−1) : ∆1 : −t (α+1)〉 of p0 =

[

t2 : t : 1
]

is a
null line precisely when

〈tα(α−1) :∆1: −t(α+1)〉D〈tα(α−1) :∆1:−t (α+1)〉T=0

or

−α2(α+ t2α2
− t2α+1

)2
= 0.

Sinceα 6= 0, this is equivalent to∆3 = 0. Similarly R2 =
〈tα(α+1) : −∆2 : t (α−1)〉 is a null line precisely when

−α2(
−α+ t2α2+ t2α+1

)2
= 0

or ∆4 = 0. �

4 Parallels between the Euclidean and hy-
perbolic parabolas

4.1 Some congruent triangles

Recall that the focal lineR1 ≡ p0 f1 meets the directrixF1

in the pointt1. We will assume that the focal linesR1 and
R2 are non-null line so that we have∆3 6= 0 and∆4 6= 0.

Theorem 22 (Congruent triangles) Suppose that the
tangent P0 to P0 at p0 meets S2 = t1 f2 at the point m1. Then
the trianglesp0t1m1 and p0 f2m1 are congruent. In par-
ticular i) q(p0, t1) = q(p0, f2); ii) q

(

t1,m1
)

= q
(

m1, f2
)

;
iii) S2 ⊥ P0; iv) the tangent P0 is a bisector of the vertex
R1R2; v) S(S2,R1) = S(S2,R2); and vi) the tangent P0 is
a midline of the sidet1 f2. The same statements are true by
f1− f2 symmetry if we interchange the indices1 and2.

Proof. i) The first statementq(p0, t1) = q(p0, f2) comes
from the definition of the parabolaP0, and we can also cal-
culate quadrances to obtain

q(p0, t1) = q
([

t2 : t : 1
]

,
[

(α−1)∆1 : 4tα2 : α(α+1)∆1
])

=
∆2

4

∆2
4−∆2

3

= q
([

t2 : t : 1
]

, [1−α : 0 : α(α+1)]
)

= q(p0, f2) .

ii) Calculate

m1 = P0S2

=
〈

1:−2t : t2〉
×
〈

2tα2(α+1) :−
(

α2
−1
)

∆1 :2tα(α−1)
〉

=
[

t2 (α−1)2 ∆4 : −2tα∆4 : −(α+1)2 ∆4

]

=
[

−t2 (α−1)2 : 2tα : (α+1)2
]

.

Here we have used the fact that the focal lineR2 is non-null
so that∆4 is nonzero. Thus

q
(

t1,m
1)=

q
(

[

(α−1)∆1 :4tα2 :α(α+1)∆1
]

,
[

−t2(α−1)2 :2tα :(α+1)2
])

=−
1
4

(

α2−1
)

∆4

α∆3

= q
([

−t2(α−1)2 : 2tα : (α+1)2
]

, [1−α : 0 : α(α+1)]
)

= q
(

m1, f2
)

.

iii) Since the tangent lineP0 passes throughs2, which is the
dual of the lineS2 = t1 f2, the tangentP0 is perpendicular
to the lineS2; and we can also check that
〈

1:−2t : t2〉D
〈

2tα2(α+1) :
(

α2
−1
)

∆1 :2tα(α−1)
〉T

=0.

iv) The tangentP0 is a bisector of the vertexR1R2 since

S
(

R1,P
0)= S

(

〈tα(α−1) : ∆1 : −t (α+1)〉,
〈

1:−2t : t2〉)

=

(

α2−1
)(

∆2
3−∆2

4

)

4α∆4∆3

= S
(

〈tα(α+1) : −∆2 : t (α−1)〉,
〈

1:−2t : t2〉)

= S
(

R2,P
0) .

v) Now calculate the spreads

S(S2,R1) = S
(〈

2tα2 (α+1) : −
(

α2
−1
)

∆1 : 2tα(α−1)
〉

,

〈tα(α−1) : ∆1 : −t (α+1)〉
)

=
4t2α

(

α2+1
)2

16t2α3−∆2
1(α2−1)

= S
(〈

2tα2 (α+1) : −
(

α2
−1
)

∆1 : 2tα(α−1)
〉

,

〈tα(α+1) : −∆2 : t (α−1)〉
)

= S(S2,R2) .
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vi) It is obvious that the tangentP0 is a midline of the
side t1 f2, sinceP0 is perpendicular to the lineS2 = t1 f2
through the pointm1 which is, from ii), a midpoint oft1 f2.
The symmetry betweenf1 and f2 in the definition of the
parabolaP0 ensures that all these statements hold also if
we interchange the indices 1,2. �
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Figure 14:Two pairs of congruent triangles

In Figure14 we see also the pointm2 = P0S1 and the con-
gruent trianglesp0t2m2 and p0 f1m2. We call m1 andm2

the t-perpendicular points of p0. Note that the theorem
allows us a simple construction of the tangentP0 at p0:
drop the perpendicular to the linet1 f2.

Corollary 1 We have i) the trianglesm1t1 j0 and m1 f2 j0

are congruent, and ii) the trianglesp0t1 j0 and p0 f2 j0 are
congruent. The same statements are true by f1 − f2 sym-
metry if we interchange the indices1 and2.

Proof. The trianglesm1 f2 j0 andm1t1 j0 are right triangles
sinceP0 is perpendicular toS2; we also haveq

(

t1,m1
)

=

q
(

m1, f2
)

andm1 j0 is a common side.
i) We calculate the quadrances

q
(

t1, j0
)

=q
([

(α−1)∆1 : 4tα2 : α(α+1)∆1
]

,
[

−t2 : 0 : 1
])

=
∆2

4

∆2
4−∆2

1

=q
(

[1−α : 0 : α(α+1)],
[

−t2 : 0 : 1
])

=q
(

j0, f2
)

.

and spreads

S
(

t1m1, t1 j0
)

=
q
(

m1, j0
)

q(t1, j0)
=

16t2α3

16t2α3−∆2
1(α2−1)

=
q
(

m1, j0
)

q( j0, f2)
= S

(

f2 j0, f2m1) .

S
(

j0m1, j0t1
)

=
q
(

m1, t1
)

q(t1, j0)
=

(

α2−1
)

∆2
1

16t2α3−∆2
1(α2−1)

=
q
(

m1, f2
)

q( j0, f2)
= S

(

j0m1, j0 f2
)

.

Therefore, the trianglesm1t1 j0 andm1 f2 j0 are congruent.
ii) The trianglesp0 f2 j0 and p0t1 j0 have one common side
p0 j0. Using the Spread law and the congruences above,

S
(

t1p0, t1 j0
)

=
S
(

p0t1, p0 j0
)

q
(

p0, j0
)

q(t1, j0)

=
S
(

p0 f2, p0 j0
)

q
(

p0, j0
)

q( f2, j0)
=

∆2
1−∆2

3

∆2
4

= S
(

f2p0, f2 j0
)

.

Therefore, the trianglesp0 f2 j0 and p0t1 j0 are congruent.
�

Theorem 23 (Tangent base symmetry)Let j0 ≡ AP0 be
the meet of the axis A and the tangent P0, and h0 the base
of the altitude from p0 to A. Then i) q

(

b1, j0
)

= q( f2,h0)

and ii) q
(

v1, j0
)

= q(v1,h0). The same statements are true
if we interchange the indices1 and2 by f1− f2 symmetry.

Proof. i) We calculate the quadrances

q
(

b1, j0
)

= q
([

α(α−1) : 0 : α2 (α+1)
]

,
[

−t2 : 0 : 1
])

=
∆2

2

∆2
2−∆2

3

= q
(

[1−α : 0 : α(α+1)] ,
[

t2 : 0 : 1
])

= q( f2,h0) .

ii) Similarly, we calculate the quadrances

q
(

v1, j0
)

= q
(

[0 : 0 : 1] ,
[

−t2 : 0 : 1
])

=
t4α2

t4α2−1
= q

(

[0 : 0 : 1] ,
[

t2 : 0 : 1
])

= q(v1,h0) . �
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Figure 15:The j0 and h0 points

Theorem 24 (Two chord midpoints) Let p0 ≡ p(t), q0 ≡

p(u) be two points on a hyperbolic parabolaP0, with p0

the opposite point of p0 with respect to the axis A. Suppose
that the chordsp0q0 and q0p0 meet A at x and y respec-
tively. Then the vertices v1,v2 of P0 are the midpoints of
the sidexy.
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Proof. Supposep0 =
[

t2 : t : 1
]

andq0 =
[

u2 : u : 1
]

. The
line p0q0 = 〈1 :−(t +u) : tu〉 meets the axisA= [0 : 1 : 0]
at x = [−tu : 0 : 1]. The chordp0q0 = 〈1 : t −u : −tu〉 in-
tersectsA= 〈0 : 1 : 0〉 at y= [tu : 0 : 1] . Thus

q(v1,x) = q([0 : 0 : 1] , [−tu : 0 : 1]) =
α2t2u2

(t2u2α2−1)

= q([0 : 0 : 1] , [tu : 0 : 1]) = q(v1,y)

which showsv1 is a midpoint of the sidexy. The other mid-
point will be perpendicular tov1, which must bev2 without
calculation. �
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Figure 16:Two chord midpoints

4.2 The optical property

Recall the famousoptical propertyof a parabolaP in Eu-
clidean geometry: ifP is a point lying onP , and light em-
anates from the focusF heading towards the pointP, then
the light will be reflected to be parallel to the axis. An
analogous result in the hyperbolic case is the statement iv)
of the Congruent triangles theorem: that the tangent line
P0 to a pointp0 is a biline (bisector) of the vertexR1R2.
So reflecting the focal lineR1 ≡ f1p0 in the tangentP0 re-
sults in the other focal lineR2, which is perpendicular to
the directrixF2.

Recall from [16] that in Universal Hyperbolic Geometry
there is an important notion of parallelism, which is quite
different from the usage in classical hyperbolic geometry.
We say rather generally that theparallel line P through a
point a to a line L is the line througha perpendicular to
the altitude froma to L.
Now recall that given a pointp0 on the hyperbolic parabola
P0, the perpendicular to the axisA through p0 is J0 ≡

( j0)
⊥ = ap0 =

〈

1 : 0 :−t2
〉

with dual point j0 = P0A =
[

1 : 0 :t2α2
]

. Therefore, the parallel line to the axisA
through the pointp0 is

L0 = j0p0 =
〈

−t3α2 : t4α2
−1 : t

〉

.

Here then is another analog of the optical property, dealing
with the relationship between two spreads formed by the
tangent lineP0. Recall that the quadrance of the parabola
was defined asqP0 ≡ q( f1, f2).

Theorem 25 (Parallel line spread relation)Let p0 be a
point on the hyperbolic parabolaP0. If ̂T is the spread be-
tween the tangent line P0 at p0 and the parallel line L0 to
the axis through p0, and̂S is the common spread between
the tangent P0 and the lines R1 and R2, then

(̂S− ̂T)̂S

1− ̂T
= 1−qP0.

Proof. Using the Spread formula, we compute that

̂S= S
(

R1,P
0)=

(

α2−1
)(

∆2
3−∆2

4

)

4α∆4∆3

and

̂T = S
(

L0,P
0)=

−
(

α2−1
)(

t4α2+1
)2

(t4α2−1)∆3∆4
.

So now
(̂S− ̂T)̂S

1− ̂T
=−

1
4

(

α2−1
)2

α2 = 1−qP0. �
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Figure 17:The parallel line spread relation

Note that 1−qP0 = q(b1, f2) sinceb1 and f1 are perpen-
dicular points. So in the limiting Euclidean case whenb1

is very close tof2, it follows that̂S is very close tôT.

4.3 Thespoints and S circles

Recall thats1 ≡ F1P0 ands2 ≡ F2P0.

Theorem 26 (TheS1 and S2 circles) The circle S1 with
center s1 passing through f2 also passes through t1, and
is tangent at these points to R2 and R1 respectively. In par-
ticular i) q(s1, t1) = q(s1, f2); ii) R1 ⊥ F1; iii) R2 ⊥ T2 and
iv) S(s1t1, t1 f2) = S(s1 f2, f2t1) . The same statements are
true if we interchange the indices1 and 2, giving also a
circle S2 with center s2.
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Proof. i) Calculate

q(s1, t1) = q
(

[2t (α−1) : ∆2 : 2tα(α+1)] ,
[

(α−1)∆1 : 4tα2 : α(α+1)∆1
])

=

(

α2−1
)

∆2
4

16t2α3+∆2
2(α2−1)

= q(s1, f2) .

ii) The lineR1 = f1p0 is clearly perpendicular to the direc-
trix F1 since it passes through the focusf1 = F⊥

1 .

iii) Sincet2 = R2F2, S1 = f1t2, the linesR2,F2 andS1 are
concurrent att2, so the lineT2 = t⊥2 passes throughr2, f2
ands1. ThereforeT2 is perpendicular to the lineR2.

iv) Calculate

S(t1s1, t1 f2) = S(〈α(α+1) : 0 : 1−α〉 ,
〈

2tα2(α+1) : −
(

α2
−1
)

∆1 : 2tα(α−1)
〉

)

=

(

α2−1
)

∆2
3

16t2α3−∆2
1(α2−1)

= S( f2s1, f2t1) . �
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Figure 18:TheS1 andS2 circles

In particular, property iii) provides us with an important
alternate construction of the tangentP0 to the parabolaP0

at p0 : namely we construct the altitudeT2 to p0 f2 through
f2, and obtains1 = F1T2, giving P0 = p0s1 (or similarly
constructp0s2). In Figure 18 we see the circlesS1 andS2.
Note thatS2 looks like a hyperbola tangent to the null cir-
cle, in fact it is tangent at exactly the points whereS2 meets
the null circleC – see the discussion in [18].

4.4 Focal chords and conjugates

A chordp0q0 is afocal chord precisely whenp0q0 passes
through a focus. Such chords play an important role both
in the Euclidean and the hyperbolic theory.
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Theorem 27 (Focal tangents perpendicularity)If p0 ≡

p(t) and q0 ≡ p(u) are two points onP0 then p0q0 is a
focal chord precisely when the respective tangents P0 and
Q0 are perpendicular; and precisely when the polar point
z≡ P0Q0 lies on a directrix.

Proof. Supposep0 =
[

t2 : t : 1
]

andq0 =
[

u2 : u : 1
]

lie on
P0. Thenp0q0 = 〈1 :−(t +u) : tu〉 is a focal line precisely
when it passes through eitherf1 of f2, in other words pre-
cisely when

(1 :−(t +u) : tu)[α+1 : 0 :α(α−1)]T

= α+1+ tuα(α−1) = 0 or

(1 :−(t +u) : tu)[1−α : 0 : α(α+1)]T

=−α+1+ tuα(α+1) = 0.

On the other hand the tangentsP0 =
〈

1 :−2t : t2
〉

and
Q0 =

〈

1 :−2u : u2
〉

are perpendicular precisely when

0=
〈

1 :−2t : t2〉D
〈

1 :−2u : u2〉T

= α2
−4tuα2

− t2u2α2(α2
−1
)

−1

= (α+1+ tuα(α−1))(α−1− tuα(α+1)) .

Thus the two conditions are equivalent.
As in the Tangent meets theorem, the tangentsP0 and
Q0 meet atz= [2tu : t +u : 2]. This point lies onF1 =
〈α(α+1) : 0 : 1−α〉 or F2 = 〈α(α−1) : 0 : α+1〉 pre-
cisely when

[2tu : t +u : 2] (α(α+1) : 0 : 1−α)T

= 2
(

−α+ tuα+ tuα2+1
)

= 0 or

[2tu : t +u : 2] (α(α−1) : 0 : α+1)T

= 2
(

α− tuα+ tuα2+1
)

= 0.

Since we work over a field not of characteristic two, the
conditions are equivalent to the previous ones. �
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Given a pointp0 on the parabolaP0, we define theconju-
gate pointsn1, n2 as the second meets of the focal linesR1

andR2 with the parabolaP0 respectively. Since one meet is
known, solving the quadratic equations is straightforward
and yields

n1 =
[

(α+1)2 : tα
(

1−α2) : t2α2 (α−1)2
]

n2 =
[

(α−1)2 : tα
(

α2
−1
)

: t2α2 (α+1)2
]

. (14)
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Figure 20:Focal conjugates n1 and n2

The dual lines are theconjugate lines;

N1 ≡ n⊥1 =
〈

α(α+1)2 : t
(

α2
−1
)2

: −t2α(α−1)2
〉

N2 ≡ n⊥2 =
〈

−α(α−1)2 : t
(

α2
−1
)2

: t2α(α+1)2
〉

.

Theorem 28 (Conjugate points parameter)Let p0 ≡

p(t) be a point on the parabolaP0, then the point p(u)
is the conjugate point n1 of p0 with respect to the focus
f1 precisely when u= −

α+1
αt(α−1) , while p(u) is the conju-

gate point n2 of p0 with respect to the focus f2 precisely
when u= α−1

αt(α+1) .

Proof. Let p0 =
[

t2 : t : 1
]

and p(u) =
[

u2 : u : 1
]

lie on
P0. Then, the linep0q0 = 〈1 :−(t +u) : tu〉 is a focal line
with respect to the focusf1 when it passes through the fo-
cus f1 and then we have

[1 :−(t +u) : tu] [α+1 : 0 :α(α−1)]T = 0 so that

α− tuα+ tuα2+1= 0.

This gives the conditionu=−
α+1

αt(α−1) . Similarly, the other
direction is straightforward.
When the linep0q0 = 〈1 :−(t +u) : tu〉 is a focal line with
respect to the focusf2 , then the focal line passes through
the focusf2 and we have

[1 :−(t +u) : tu] [1−α : 0 : α(α+1)]T = 0 so that

−α+ tuα+ tuα2+1= 0.

This gives the conditionu = α−1
αt(α+1) . Similarly, the other

direction is straightforward. �

4.5 Quadrance cross ratios

Theorem 29 (Quadrance cross ratio)Suppose that
a,b,c,d are a harmonic range of points on a line L in
UHG. Then

q(a,c)
q(a,d)

=
q(b,c)
q(b,d)

.

Proof. We know from projective geometry that a harmonic
range of pointsa,b,c,d in the projective space can be re-
alized as[v] , [u] , [αv+βu] , [αv−βu] for two vectorsv and
u and two scalarsα andβ. Then using the short hand nota-
tion v2 ≡ v ·v anduv= u ·v, we calculate that

q([v], [αv+βu])= 1−
(v · (αv+βu))2

(v ·v)((αv+βu) · (αv+βu))

=
v2
(

α2v2+2αβ(uv)+β2u2
)

−
(

αv2+βuv
)2

v2 (α2v2+2αβ(uv)+β2u2)

=
β2
(

u2v2− (uv)2
)

v2 (α2v2+2αβ(uv)+β2u2)

and similarly

q([u], [αv+βu])= 1−
(u · (αv+βu))2

(u ·u)((αv+βu) · (αv+βu))

=
u2
(

α2v2+2αβ(uv)+β2u2
)

−
(

α(uv)+βu2
)2

u2(α2v2+2αβ(uv)+β2u2)

=
α2
(

u2v2− (uv)2
)

u2(α2v2+2αβ(uv)+β2u2)
.

It follows that

q(a,c)
q(b,c)

=
q([v] , [αv+βu])
q([u] , [αv+βu])

=
β2u2

α2v2 .

But this quantity is then unchanged if we replacedα with
−α, or β with −β. �

Theorem 30 (Conjugate cross ratios)Let p0 be a point
on the parabolaP0, with n1 and n2 the focal conjugates
and u1 and u2 the meets of R2 and R1 with the directrices
F1 and F2 respectively. Then

q(p0, f1)
q( f1,n1)

=
q(p0,u2)

q(u2,n1)
and

q(p0, f2)
q( f2,n2)

=
q(p0,u1)

q(u1,n2)
.

Proof. From the Focus directrix polarity theorem, we
know that f2 andF1 are a pole-polar pair with respect to
the parabolaP0. Hence f1,u2; p0,n1 is a harmonic range.
From the previous theorem, that implies that

q(p0, f1)
q( f1,n1)

=
q(p0,u2)

q(u2,n1)
.

The other relation follows similarly sincef2,u1; p0,n2 is
also a harmonic range of points. �
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4.6 Spreads related to chords of a parabola

Theorem 31 (Polar point spreads)If the tangents P0

and Q0 at the points p0 ≡ p(t) and q0 ≡ p(u) lying on the
parabolaP0 meet at the polar point z, then S( f1p0, f1z) =
S( f1q0, f1z) and S( f2p0, f2z) = S( f2q0, f2z).

Proof. Suppose thatp0 ≡
[

t2 : t : 1
]

andq0 ≡
[

u2 : u : 1
]

are on the parabolaP0. Thenz= [2tu : t +u : 2] and we
calculate

S( f1p0, f1z) =
α(t −u)2

(

α2−1
)

(α+α2t2−αt2+1)(α+α2u2−αu2+1)

=
α(t −u)2

(

α2−1
)

∆3 (t)∆3 (u)
= S( f1q0, f1z)

and

S( f2p0, f2z) =
α
(

α2−1
)

(t −u)2

(α−u2α2−u2α−1)(−α+t2α2+t2α+1)

=
−α
(

α2−1
)

(t −u)2

∆4(t)∆4 (u)
= S( f2q0, f2z) .

�
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Figure 21: The polar point z of the chordp0q0

Theorem 32 (Chord directrix meets) Let p0 ≡ p(t) and
q0 ≡ p(u) be two points on a parabolaP0. Let z be the
polar point of the chordp0q0, and x1 ≡ F1 (p0q0) and
x2 ≡ F2 (p0q0). Then i) f1z⊥ f1x2, ii) f 2z⊥ f2x1 and iii)
S(x1z,z f2) = S(x2z,z f1).

Proof. We suppose as usual thatp0 =
[

t2 : t : 1
]

and
q0 =

[

u2 : u : 1
]

. Then
i) We compute that

x2 ≡ F2 (p0q0)

=
〈

α2 (α−1) : 0 : α(1+α)
〉

×〈1 :−(t +u) : tu〉

=
[

(α+1)(t +u) : α+ tuα−tuα2+1:−α(α−1)(t +u)
]

.

Also

f1z=
〈

−α(α−1)(t + v) : 2
(

−α− tvα+ tvα2
−1
)

: (α+1)(t + v)
〉

f1x2 =
〈

α(α−1)
(

−α− tvα+ tvα2
−1
)

: 2α
(

α2
−1
)

(t + v)

: (α+1)
(

α+ tvα− tvα2+1
)〉

and so we may verify that

0=
〈

−α(α−1)(t + v) : 2
(

−α− tvα+ tvα2
−1
)

: (α+1)(t + v)
〉

D×
〈

α(α−1)
(

−α− tvα+ tvα2
−1
)

: 2α
(

α2
−1
)

(t + v)

: (α+1)
(

α+ tvα− tvα2+1
)〉T

.

Thus

S( f1z, f1x2) = 1.

ii) Similarly

x1 ≡ F1 (p0q0) = 〈α(α+1) : 0 : 1−α〉× 〈1:−(t +u) : tu〉

=
[

(α−1)(t +u) : α+ tuα+ tuα2
−1: α(α+1)(t +u)

]

and the lines

f2z=
〈

−α(α+1)(t +u) : 2
(

α+ tuα+ tuα2
−1
)

: −(α−1)(t +u)
〉

f2x1 =
〈

α(α+1)
(

α+ tuα+ tuα2
−1
)

:−2α
(

α2
−1
)

(t +u)

: (α−1)
(

α+ tuα+ tuα2
−1
)〉

are perpendicular, so that

S( f2z, f2x1) = 1.

iii) Another calculation shows that

S(x1z,z f2)=
1
4

(

α2−1
)

(

(2tu)2−(t+u)2
)

α2+(t +u)2−4

(t2u2)α4+
(

(t +u)2−(t2u2+1)
)

α2+1

=S(x2z,zf1) . �
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Figure 22:Chord directrix meets x1 and x2

In Figure 22 we see the two trianglesf1zx2 and f2zx1,
which are both right triangles sharing a common spread.

34



KoG•17–2013 A. Alkhaldi, N. J. Wildberger: The Parabola in Universal Hyperbolic Geometry I

Theorem 33 (Tangent directrix meets) If the two tan-
gents P0 and Q0 to a parabola P0 at p0 ≡ p(t) and
q0 ≡ p(u) respectively meet the directrix F1 at s1 and
s′1 respectively, and meet F2 at s2 and s′2 respectively,
then S( f1p0, f1q0) = S( f1s2, f1s′2) and S( f2p0, f2q0) =
S( f2s1, f2s′1).

Proof. Suppose thatp0 ≡
[

t2 : t : 1
]

andq0 ≡
[

u2 : u : 1
]

are on the parabolaP0. Then

S( f1p0, f1q0) =
4α
(

α2−1
)

(t−u)2
(

α+α2tu−αtu+1
)2

∆2
3 (t)∆2

3 (u)

= S
(

f1s2, f1s′2
)

.

Also, we have that

S( f2p0, f2q0)

=
−4α

(

α2−1
)

(t −u)2
(

−α+ tuα+ tuα2+1
)2

∆2
4 (t)∆2

4 (u)

= S
(

f2s1, f2s′1
)

. �
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Figure 23:Tangent directrix meets s1 and s2

Recall that in universal hyperbolic geometry, a triangle
may have four circumcircles.

Theorem 34 (Two tangents circumcircle)Suppose that
the two points p0 ≡ p(t) and q0 ≡ p(u) on a parabola
P0 have respective altitude base points t1, t2 and t′1, t

′
2 on

F1,F2 respectively, and that their tangents meet at the po-
lar point z. Then z is a circumcenter of both the triangles
t1 f2t ′1 andt2 f1t ′2. In particular q(t1,z) = q(t ′1,z) = q(z, f2)
and q(t2,z) = q(t ′2,z) = q(z, f1).

Proof. Suppose thatp0 ≡
[

t2 : t : 1
]

andq0 ≡
[

u2 : u : 1
]

are on the parabolaP0, then,

q(z, f2) = q([2tu : t +u : 2] , [1−α : 0 : α(α+1)])

=
∆4 (t)∆4 (u)

α
((

4t2u2− (t +u)2
)

α2+(t +u)2−4
)

= q(z, t1) = q(z, t ′1).

Hencez is a circumcenter of the trianglet1 f2t ′1. Similarly,
z is the circumcenter of the trianglet2 f1t ′2 since

q(z, f1) = q([2tu : t +u : 2] , [α+1 : 0 :α(α−1)])

=−
∆3 (t)∆3 (u)

α
((

4t2u2− (t +u)2
)

α2+(t +u)2−4
)

= q(z, t2) = q(z, t ′2). �
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Figure 24:Two points and polar circles

In Figure 24 we see the polar point ofp0p′0 together with
the twopolar circles centered atz through the foci.

Corollary 2 If the tangents at p0 ≡ p(t) and q0 ≡ p(u) on
P0 meet at z then the line f1z is a midline of the sidet1t ′1
and similarly f2z is a midline of the sidet2t ′2.

Proof. This follows immediately from the previous theo-
rem, sincef1z is the altitude fromz to the directrixF1, so
it bisects the chordt1t ′1. �

Theorem 35 (Opposite triangle spreads)If the tangents
at p0 ≡ p(t) and q0 ≡ p(u) on P0 meet at z, then
S(zp0,z f1) = S(zq0,z f2) and S(zp0,z f2) = S(zq0,z f1).

Proof. Using the Spread formula, we obtain

S(zp0,z f2)=−

(

α2−1
)

((

4t2u2−(t+u)2
)

α2+(t+u)2−4
)

4∆4(u)∆3 (t)

=S(zq0,z f1)

and

S(zp0,z f1)=−

(

α2−1
)

((

4t2u2−(t+u)2
)

α2+(t+u)2−4
)

4∆3(u)∆4(t)

=S(zq0,z f2). �
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5 Normals to the parabolaP0

In the Euclidean case, it is well known that the evolute of
the parabola, which is defined as the locus of the center of
curvature of the curve—namely the meet of adjacent nor-
mals, as Huygens or Newton would have said—is asemi-
cubical parabola. For the curvey = x2, shown in Figure
26, the evolute has equation

(

y−
1
2

)3

=
27
16

x2.

This formula suggests that there is no Euclidean ruler and
compass construction for the center of curvatureC0 of the
parabola for a general pointP0 on it. We will see that in
the hyperbolic case, the situation is in some ways simpler,
and indeed we will show how to give a straightedge con-
struction for the center of curvature!
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Figure 26:Evolute of a Euclidean parabola

In Figure 26 we see a pointP0 on the Euclidean parabola,
with its tangentp0, obtained by finding the meetS of
the directrix f with the altitude to the focal liner = FP0

through the focusF. The center of curvature is the pointC0

on the evoluteE . The figure shows also that for pointsL
above the evolute, there are three normals that meet there;
we exhibit also the other two points markedP whose nor-
mals also pass throughL. Below the evolute only one nor-
mal passes through any fixed point.
For a pointp0 on the hyperbolic parabolaP0, the altitude
line P to the tangentP0 throughp0 is called thenormal
line at p0.
Since the dual ofP0 is the twin pointp0, we see that

P≡ p0p0 =
[

t2 : t : 1
]

×
[

α2
−1 : 2tα2 : −t2α2(α2

−1
)]

=
〈

− tα2(t2α2
− t2+2

)

:
(

α2
−1
)(

t4α2+1
)

: t
(

2t2α2
−α2+1

)〉

. (15)

By symmetry, this means thatP is both the normal line to
the parabolaP0 at p0 as well as the normal line to the twin
parabolaP 0 at p0.
The meet ofP and the axisA is the point

n≡ PA

=
〈

− tα2(t2α2
− t2+2

)

:
(

α2
−1
)(

t4α2+1
)

: t
(

2t2α2
−α2+1

)〉

×〈0 : 1 : 0〉

=
[

t
(

2t2α2
−α2+1

)

: 0 : tα2(t2α2
− t2+2

)]

=
[

2t2α2
−α2+1 : 0 :α2(t2α2

− t2+2
)]

provided thatt 6= 0. Since the normalP of is perpendicu-
lar to the tangentP0, and sinceP0 is a biline of the vertex
R1R2, the normalP is the other biline for the vertexR1R2.
In fact we may calculate that

S(R1,P) = S(P,R2) =
t2
(

α2+1
)2

−∆3∆4
.

5.1 Conjugate normals and conics

Recall that the conjugate pointsn1, n2 of p0 are the second
meets of the focal linesR1 ≡ f1p0 andR2 ≡ f2p0 with the
parabolaP0 respectively. They are given in (14). The nor-
mal lines toP0 at the conjugate pointsn1 andn2 can then
be computed using the formula (15):

P1 ≡

〈

tα(α−1)
(

2α2 (α−1)t2+(α+1)3
)

: α2 (α−1)4 t4+(α+1)4

: −tα(α+1)
(

2(α+1)− (α−1)3 t2
)〉

P2 ≡

〈

− tα(α+1)
(

2α2 (α+1)t2+(α−1)3
)

: α2 (α+1)4 t4+(α−1)4

: tα(α−1)
(

2(α−1)− (α+1)3 t2
)〉

.

We will call these theconjugate normal linesof p0.
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Theorem 36 (Conjugate normal conics)There are two
conicsH1 andH2 with the following properties. Let h1 be
the meet of the normal P and the conjugate normal P1 of a
point p0 on P0. Then h1 lies onH1, which passes through
f2 and is tangent to B1 there. Similarly if h2 is the meet of
P and P2 at p0, then h2 lies onH2, which passes through f1

and is tangent to B2 there. Furthermore we have collinear-
ities [[ f1s2h2]] as well as[[ f2s1h1]] . In additionH1 passes
through the points d0 andd0.

Proof. The conjugate normalP1 will meet the normalP at

h1 ≡ PP1 =
[

−α2 (α−1)3 t4+4α2 (α+1) t2
−(α−1)(α+1)2 : tα

(

α2+1
)

∆1

: α
(

α2 (α+1) (α−1)2 t4+4α2 (α−1) t2+(α+1)3
)]

A computation shows this point always lies on the conic
H1 with equation

α2(α2
−1
)(

1+4α+α2)x2

+2α
(

1−2α−α2)(1+2α−α2)xz

+32α3y2+
(

α2
−1
)(

1−4α+α2)z2 = 0.

The conjugate normalP2 will meet the normalP at

h2 ≡ PP2 =
[

α2 (α+1)3 t4
−4α2(α−1)t2+(α+1)(α−1)2

: tα
(

α2+1
)

∆2

: α
(

α2(α−1)(α+1)2 t4+4α2(α+1)t2+(α−1)3
)]

.

This point always lies on the conicH2 with equation

α2(α2
−1
)(

1−4α+α2)x2

−2α
(

2α+α2
−1
)(

−2α+α2
−1
)

xz

−32α3y2+
(

α2
−1
)(

1+4α+α2)z2 = 0.

The collinearity[[ f1s1h2]] is established by checking that
the determinant formed by the respective vectors is indeed
0 (it is!), and similarly for the collinearity[[ f2s2h1]]. We
can also check (with a computer package) that both of the
pointsd0 andd0 identically satisfy the equation ofH1. �

The normalP at p0 meets the parabolaP0 again at a second
point

p′0=
[(

2t2α2
−α2+1

)2
: tα2(

−t2α2+t2
−2
)(

2t2α2
−α2+1

)

: t2α4(t2α2
− t2+2

)2]

and similarly the conjugate normalsP1,P2 at n1,n2 meet
P0 respectively also at

n′1 =
[

t2α2
(

(α−1)3 t2
−2(α+1)

)2

: tα
(

2(α+1)−(α−1)3 t2
)(

2α2(α−1) t2+(α+1)3
)

:
(

2α2(α−1) t2+(α+1)3
)2]

n′2 =
[

t2α2
(

(α+1)3 t2+2(1−α)
)2

:
(

2α2(α+1)t2+(α−1)3
)(

α(α+1)3 t3
−2α(α−1)t

)

:
(

2α2 (α+1)t2+(α−1)3
)2]

.
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Figure 27:Conjugate normal meets h1 and h2 and conics

Theorem 37 (Normal conjugate colliearities)Let p′0,n
′
1

and n′2 be the second meets of the normals and conjugate
normals P,P1 and P2 of p0 with the parabolaP0 respec-
tively, and t1, t2 the altitude base points of p0. Then we
have collinearities[[p′0n′1t1]] and[[p′0n′2t2]].

Proof. Since the forms of all the points involved are
known, it is straightforward (with a computer package)
to verify that the corresponding determinants for both
collinearities do evaluate identically to 0. �

These collinearities are illustrated in Figure 28.
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5.2 Four points with concurrent normals

In the Euclidean case, finding the three pointsP on the
parabola whose normals pass through a given pointL
above the evolute is not straightforward [8]. We will show
that in the hyperbolic case there is an interesting conic,
related to the elementary symmetric functions of four vari-
ablest1, t2, t3, t4, that allows us to findfour such points.

Theorem 38 (Four parabola normals) If l is a point in
the hyperbolic plane, then there are at most four points p
on the parabolaP0 whose normals pass through l.

Proof. We know that the normal top0 =
[

t2 : t : 1
]

is the
line

P=
〈

tα2(
−t2α2+ t2

−2
)

:
(

α2
−1
)(

t4α2+1
)

: t
(

2t2α2
−α2+1

)〉

.

If P passes through a pointl = [x0 : y0 : z0] , then lP = 0,
which after rearranging is the equation

α2(α2
−1
)

y0t
4+α2((1−α2)x0+2z0

)

t3

+
((

1−α2)z0−2α2x0
)

t +
(

α2
−1
)

y0 = 0. (16)

This is a polynomial of degree four int, so it has at most
four solutions. �

Theorem 39 (Quadratric normal meets) Suppose p0 =
p(t) and q0 = p(u) are two points on the parabola, whose
respective normals P and Q meet at a point l, and sup-
poseα2+1 6= 0. Then there are0,1 or 2 other points on
the parabola whose normals pass through l precisely when
∇ =

(

t2u2α2+1
)2
−4tuα2(t +u)2 is not a square, is zero,

or is a non-zero square respectively.

Proof. The meet of the two normals is

l ≡ PQ=
[

(

α2
−1
)((

tu
(

2t2u2
−tu− t2

−u2))α4+
(

(tu−2)
(

tu+ t2+u2)+1
)

α2
−1
)

: −tuα2(α2+1
)2

(t +u)

: α2(α2
−1
)(

t3u3α4+
(

(2tu−1)
(

tu+t2+u2)
−t3u3)α2+

(

t2+tu+u2
−2
))

]

and we need to check when a third pointr0 ≡ p(v) on P0

has a normalR also passing throughl . This is equivalent
to lR= 0 which yields, after remarkable simplification,

−α2(α2
−1
)(

α2+1
)2
(u− v)(t − v)

·
(

t +u+ v+ tu2v2α2+ t2uv2α2+ t2u2vα2)= 0.

Since α 6= 0,±1 and u, t,v are disjoint, this condi-
tion reduces to the quadratic equationtuα2(t +u)v2 +
(

t2u2α2+1
)

v+(t +u) = 0 in v with discriminant

∇ =
(

t2u2α2+1
)2
−4tuα2(t +u)2 . �

The question of the existence of four points on the parabola
P0 with a common normal point is closely related to an in-
teresting conic associated to four points on the parabola;
namely the conicA through those four points and the axis
point a, which has independent interest due to its form.
We call this conicA (p1, p2, p3, p4) the four-point conic
throughp1, p2, p3 andp4.

Theorem 40 (Four point conic) For any four points p1 ≡
p(t) , p2 ≡ p(u) , p3 ≡ p(v) and p4 ≡ p(w) lying onP0, the
four-point conicA (p1, p2, p3, p4) has equation

0=x2
−(t +u+ v+w)xy+(tu+ tv+ tw+uv+uw+vw)xz

− (tuv+ tuw+ tvw+uvw)yz+ tuvwz2. (17)

Proof. We use a standard technique for computing a conic
through five given points: by taking a combination of the
degenerate line products formed by pairs of four points
p1, p2, p3 andp4. Now

p1p2 = (1 :−(t +u) : tu) p3p4 = (1 :−(v+w) : vw)

p1p3 = (1 :−(t + v) : tv) p2p4 = (1 :−(t +w) : tw)

so the general conic in the pencil throughp1, p2, p3 andp4,
has the form

0=p(x,y,z) = (x− (t +u)y+ tuz)(x− (v+w)y+ vwz)

+λ(x− (t + v)y+ tvz)(x− (u+w)y+uwz) .

Now since alsop(0,1,0) = 0, we can solve forλ to get

λ =−
(t +u)(v+w)
(t + v)(u+w)

.

Substituting back and simplifying, we find that the equa-
tion of the required conic is (17). �
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Figure 29:Four points p with normals through l and asso-
ciated conicA
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There is a clear similarity between the form of this conic
and the familiar identity

(x− t1)(x− t2) (x− t3) (x− t4) = x4
− (t1+ t2+ t3+ t4)x3

+(t1t2+ t1t3+ t1t4+ t2t3+ t2t4+ t3t4)x2

− (t1t2t3+ t1t2t4+ t1t3t4+ t2t3t4)x+ t1t2t3t4

relating the coefficients of a degree four polynomial and
the elementary symmetric functions of its zeros. This may
be explained by noting that ifp = [x : y : z] =

[

t2 : t : 1
]

is a point on the parabola, then the quantitiesx2,xy,xz,yz
andz2 are respectively exactlyt4, t3, t2, t and 1, while the
condition that the conic passes througha ensures that the
coefficient ofy2 is necessarily 0.

5.3 The conicAn and finding normals

Theorem 41 (Four normal conic) Suppose that the nor-
mal lines at four points p1, p2, p3, p4 lying onP0 are con-
current at a point l= [x0,y0,z0] not lying on the axis A.
Then the conicAl with equation

α2(α2
−1
)

y0x2+α2(x0+2z0− x0α2)xy

+
(

z0− z0α2
−2x0α2)yz+

(

α2
−1
)

y0z2 = 0 (18)

passes through the six points p1, p2, p3, p4,a and l, so in
particular Al = A (p1, p2, p3, p4).

Proof. The condition (16) ont for p=
[

t2 : t : 1
]

on P0 to
have a normal line passing throughl ≡ [x0,y0,z0] may be
rewritten, sincey0 6= 0, as

t4+
α2
(

x0
(

1−α2
)

+2z0
)

α2 (α2−1)y0
t3+

(

z0
(

1−α2
)

−2x0α2
)

α2 (α2−1)y0
t+

1
α2 =0.

If we have four distinct solutionst,u,v,w of this equation,
then

t +u+ v+w=−
α2
(

x0
(

1−α2
)

+2z0
)

α2y0 (α2−1)

tu+ tv+ tw+uv+uw+vw= 0

tuv+ tuw+ tvw+uvw=−
z0
(

1−α2
)

−2x0α2

α2y0 (α2−1)

tuvw=
1

α2 .

From the previous theorem, the conic passing through the
five points p1 = p(t) , p2 = p(u) , p3 = p(v) , p4 = p(w)
anda then has the form

x2+
α2
(

x0+2z0−x0α2
)

α2 (α2−1)y0
xy+

(

z0−2x0α2−z0α2
)

α2 (α2−1)y0
yz+

1
α2z2=0

which we can rewrite as the conicAl (18). But now we can
check that alsol lies on this conic, since identically

α2(α2
−1
)

y0x2
0+α2(x0

(

1−α2)+2z0
)

x0y0

+
(

z0
(

1−α2)
−2x0α2)y0z0+

(

α2
−1
)

y0z2
0 = 0. �

Theorem 42 (Conic construction of common normals)
Let l be a point of the hyperbolic plane with the property
that the dual line L of l meetsP0 at two points x and y.
Then the meet z of the tangent lines toP0 at x and y, the
meet x′ of the tangent line at x and the dual line of x, and
the meet y′ of the tangent line at y and the dual line of y,
all line on the conicAl .

Proof. Suppose that the dual lineL of l meetsP0 at two
pointsx =

[

t2 : t : 1
]

andy =
[

u2 : u : 1
]

. Then the meets
of the tangent lines isz= [2tu : t +u : 2] from the Tangent
meets theorem. AlsoL = 〈1 :−(t +u) : tu〉 and

l =
[

α2
−1 : α2 (t +u) : −α2tu

(

α2
−1
)]

.

In this case the equation (18) for the conicAl simplifies,
after some cancellation, to

α2 (t +u)x2+
(

1−2tuα2
−α2)xy

+
(

tuα2
− tu−2

)

yz+(t +u)z2 = 0. (19)

The dual line ofx meets the tangent line atx at

x′ =
[

t
(

α2t2
− t2+2

)

: α2t4+1 : t
(

2α2t2
−α2+1

)]

and the dual line ofy meets the tangent line aty at

y′ =
[

u
(

α2u2
−u2+2

)

: α2u4+1 : u
(

2α2u2
−α2+1

)]

.

We check that both of these points identically satisfy the
equation (19). �
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Figure 30:Construction of points p onP0 with normals
through n

This also provides us with an elegant method to find all
normals through a given pointl . Firstly, find the dual line
L of the pointl and then find the meetsx,y of this lineL
with the parabolaP0. Construct the tangentsPx, Py to P0

at x andy and find their meetz. Construct the dual lines
X andY of x andy, then find the meet of the tangent atx
and the dual line ofx, that isx′ = PxX and the meet of the
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tangent aty and the dual line ofy, that isy′ = PyY. Accord-
ing to the above theorem, the five pointsl ,x′,y′,z,a lie on
a conicAl which may meet the parabolaP0 in at most four
points which have the property that their normals meet at
l . We see that the number of normals passing throughl is
determined by the meet of the conicAl with the parabola
P0. So if we can find the meets of these two conics, we
have the normals which pass throughl .
This construction shows that some aspects of hyperbolic
geometry are surprisingly more simple than in Euclidean
geometry. In the latter, finding normals to points on a
parabola from a particular point is quite cumbersome, as
shown in [8].
Furthermore, the four normals drawn from a particular
points are also the normals to four points on the twin
parabolaP 0. These points are the dual points of the tan-
gents to four points on the original parabolaP0 . This ob-
servation is the result of duality between lines and points.

5.4 Normal conjugate points

If p0 is a point onP0 with tangent lineP0 and normal line
P, then the other meet ofP with the parabola gives a point
p′0, which we call thenormal conjugate point of p0. Then
the tangent lineP0′ to p′0 meets withP0 at the point

k0 = P0P0′

=
〈

t2α4(t2α2
−t2+2

)2
: 2tα2(t2α2

−t2+2
)(

2t2α2
−α2+1

)

:
(

2t2α2
−α2+1

)2
〉

×
〈

1 :−2t : t2〉

=
[

−2t
(

2t2α2
−α2+1

)

:
(

α2
−1
)(

t4α2+1
)

:2tα2(t2α2
−t2+2

)]

.

Figure 31 shows thenormal conjugate curveK0 : the lo-
cus ofk0 as p0 moves. This a higher degree curve which
passes througha as well asd0 andd0, and is tangent toP0

at those latter two points. It seems an interesting future di-
rection to investigate more fully such associated algebraic
curves connected withP0.

f b
n

k
d

b 2
2

1

1F

A

P

K

C
0

0

f

a

2
1 F

p

p p

P

P

P

1

0
0

0

0
0

0

0

v
v2

Figure 31:The normal conjugate conicK0

5.5 The evolute and centers of curvature

Recall that theevolute of a curve is the envelope of the
normals to that curve, or equivalently the locus of the cen-
ters of curvature. Following the technique described in [4],
here is a pleasant construction of the center of curvaturec0

to the hyperbolic parabolaP0 at the pointp0.
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Figure 32:Evolute of a parabola

Theorem 43 (Center of curvature construction) Let P
be the normal at p0 to the parabolaP0, and construct the
altitude line Q to P through n=AP. Suppose that the meets
of Q with the focal lines R1 and R2 are respectively x1 and
x2. Then the meet of the perpendicular line to R1 through
x1 and the perpendicular line to R2 through x2 is the re-
quired center of curvature c0 to P0 at the point p0.

Proof. Let p0 =
[

t2 : t : 1
]

andn =
[

2t2α2 −α2+1 : 0 :
α2
(

t2α2− t2+2
)]

, then the perpendicular toP through
l = n is

Q≡ pn=
[

α2(t4α2+1
)(

t2α2
− t2+2

)

: t
(

2α− t2α−2t2α2+ t2α3+α2
−1
)

·
(

−2α+ t2α−2t2α2
− t2α3+α2

−1
)

:
(

t4α2+1
)(

−2t2α2+α2
−1
)

]

This line will meet the lineR1 at

x1 =
[

−2α4t6+
(

α5+3α4
−3α2

−α
)

t4

+
(

2α3
−α4+4α2+2α−1

)

t2+
(

1−α2)

: tα
(

α2+1
)(

t4α2+1
)

: α
(

−α3(α2
−1
)

t6+α
(

2α−4α2+2α3+α4+1
)

t4

−
(

α2
−1
)(

−3α+α2+1
)

t2+2α
)

]
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and the lineR2 at

x2 =
[

(

2α4) t6+
(

α5
−3α4+3α2

−α
)

t4

+
(

α4+2α3
−4α2+2α+1

)

t2+
(

α2
−1
)

: tα
(

α2+1
)(

t4α2+1
)

: α
(

α3(α2
−1
)

t6+
(

2α4
−α5+4α3+2α2

−α
)

t4

+
(

3α−3α3
−α4+1

)

t2
−2α

)

]

.

The perpendicular line toR1 throughx1 is X1 = x1r1 and
the perpendicular line toR2 throughx2 is X2 = x2r2 which
meet at

c0 = X1X2 =
[

(

α2
−1
)

(

2α4t6+3α2(1−α2) t4
−6α2t2+

(

α2
−1
)

)

: −2t3α2(α2+1
)2

: α2(α2
−1
)

(

α2(α2
−1
)

t6+6α2t4+3
(

1−α2) t2
−2
)]

.

To evaluate the center of curvature, we note that adjacent
normals, say atp(t) andp(r), meet at

f (t, r) =
[

(

α2
−1
)(

−2r3t3α4+ r3tα4
− r3tα2+ r2t2α4

− r2t2α2

+2r2α2+ rt 3α4
− rt 3α2+2rtα2+2t2α2

−α2+1
)

: rtα2 (r + t)
(

α2+1
)2

: −α2(α2
−1
)(

r3t3α4
− r3t3α2+2r3tα2+2r2t2α2

− r2α2+ r2+2rt 3α2
− rtα2+ rt − t2α2+ t2

−2
)

]

where we have removed a common factor ofr − t. Now let
r = t to find that f (t, t) = c0. �

5.6 Formula for the evolute

Can we get a formula for the evolute? Working with affine
coordinates (settingz= 1), we need eliminatet from the
equations

x=

(

2t6α4−3t4α4+3t4α2−6t2α2+α2−1
)

α2 (t6α4− t6α2+6t4α2−3t2α2+3t2−2)

y=
−2t3

(

α2+1
)2

(α2−1)(t6α4− t6α2+6t4α2−3t2α2+3t2−2)
.
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Figure 33:Normals to a parabola

We could use a Gröbner basis to calculate this, but the
polynomials are small enough to do it by hand with classi-
cal elimination. We get, after some calculation, thatx and
y satisfy the affine equation

0= h(x,y) = 32α8 (α2
−1
)3

x6
−256α2(α2

−1
)6

y6

+3α4 (8α+6α2
−8α3+3α4+3

)(

−8α+6α2+8α3+3α4+3
)

· (α−1)2 (α+1)2 x4y2

+384α4 (α2
−1
)5

x2y4+48α6 (
−2α+α2

−1
)(

2α+α2
−1
)(

α2
−1
)2

x5

−192α4 (
−2α+α2

−1
)(

2α+α2
−1
)(

α2
−1
)3

x3y2

+192α2 (
−2α+α2

−1
)(

2α+α2
−1
)(

α2
−1
)4

xy4

+24α4(α2
−1
)(

−2α−6α2+2α3+α4+1
)(

2α−6α2
−2α3+α4+1

)

x4

−384α2 (α2
−1
)5

y4

+6α2
(

196α2
−378α4+196α6+α8+1

)

(

α2
−1
)2

x2y2

+4α2 (2α+α2
−1
)(

−2α+α2
−1
)

(

−36α2+86α4
−36α6+α8+1

)

x3

+192α2 (
−2α+α2

−1
)(

2α+α2
−1
)(

α2
−1
)3

xy2

−24α2(α2
−1
)(

2α−6α2
−2α3+α4+1

)(

−2α−6α2+2α3+α4+1
)

x2

+3
(

−8α+6α2+8α3+3α4+3
)(

8α+6α2
−8α3+3α4+3

)(

α2
−1
)2

y2

+48α2 (
−2α+α2

−1
)(

2α+α2
−1
)(

α2
−1
)2

x−32α2 (α2
−1
)3

.

So the evolute is a six degree curve, with coefficients that
depend in a pleasant way onα. Note that all the coeffi-
cients are divisible byα2 − 1, with the exception of the
coefficient ofx3.
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Conchoids on the Sphere

ABSTRACT

The construction of planar conchoids can be carried over

to the Euclidean unit sphere. We study the case of con-

choids of (spherical) lines and circles. Some elementary

constructions of tangents and osculating circles are stil

valid on the sphere. Further, we aim at the illustration

and a precise description of the algebraic properties of the

principal views of spherical conchoids, i.e., the conchoid’s

images under orthogonal projections onto their symmetry

planes.

Key words: spherical curves, conchoids, algebraic curves,

tangent, osculating circle, singularities, orthogonal projec-

tion

MSC2010: 51N20, 14H99, 70B99

Konhoide na sferi

SAŽETAK

Konstrukcija ravninskih konhoida može se prenijeti na euk-

lidsku jediničnu sferu. Promatramo slučaj konhoida gener-

iranih sfernim pravacima i kružnicama. Neke elementarne

konstrukcije tangenata i kružnica zakrivljenosti vrijede i

za sferne konhoide. Nadalje, naš je cilj ilustracija i pre-

cizan opis algebarskih svojstava glavnih pogleda sfernih

konhoida, tj. slika konhoida pri ortogonalnom projiciranju

na njihove ravnine simetrije.

Ključne riječi: krivulje na sferi, konhoide, algebarske

krivulje, tangenta, kružnica zakrivljenosti, singulariteti, or-

togonalna projekcija

1 Introduction

The construction of conchoids goes back to the early Greek
mathematicians [5, 13]. Assume we are given a pointF ,
calledfocusand a linel calleddirectrix one can ask for the
setc of all points in the Euclidean plane at fixed distanced
from l measured on all lines throughF , cf. Figure 1.

The setc turns out to be an algebraic curve of degree 4,
namely theconchoidof the linel with respect toF at dis-
tanced ∈R. The conchoidc can be described by the equa-
tion

(x2
−d2)( f − x)2+ x2y2 = 0

provided that a Cartesian coordinate system is chosen as
depicted in Figure 1 withF = ( f ,0), f ∈ R andl : x= 0.
The conchoid has two branches, one corresponding to the
distance+d, while the other corresponds to the distance
−d. The algebraic variety contains both branches.

The conchoidc has an ordinary double point atF = ( f ,0)
if |d|> | f | (or an isolated double point if|d|< | f |). In the
case of|d|= | f |, F is a cusp of the first kind,i.e., with the
local expansion(u2 + o(u3),u3 + o(u4)), see [2, 3]. The
cusped curve can also be seen in Figure 2.

d

d

l

y

x

F

P

P

c c
g

L

Figure 1: The construction of the conchoid c of a line l in
the plane.

Figure 2: The planar conchoid of a line has an ordinary
double point if|d|> | f | (left), a cusp if|d|= | f |
(in the middle), and an isolated double point if
|d|< | f | (right).
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Independent of the choice ofd and f the curvec consid-
ered as a curve in the projective plane (cf. Figure 3) has a
tacnode at the ideal point of they-axis. There, two linear
branches with the same tangent emanate. Therefore, the
conchoid is of genus 0, and thus, it is a rational curve.

lF

(1:0:0) (0:1:0)

(0:0:1)

c c

Figure 3: The singularities of the conchoid considered as
a curve in the projective plane.

The nameconchoidis due to the fact that its shape some-
how reminds of a conch. The conchoid of a line (the direc-
trix l is a line) is frequently called conchoid of Nikomedes,
see [4, 5, 13]. The linel can be replaced by an arbitrary
curve.

In former years, mathematicians developed elementary
constructions of points, tangents, and osculating circlesfor
some kinds of conchoids such as those of lines and circles.
The kinematic point of view allows us to see the conchoids
as traces of moving particles, and thus, further construc-
tions of tangents and osculating circles can be deduced,
see for example [6, 14].

In the last few years conchoids became popular in CAGD,
see [1, 8, 9, 10, 11]. This is mainly due to the fact that un-
der certain circumstances conchoids can be parametrized
by means of rational functions which is mainly the content
of [8, 9]. Thus, a huge class of possibly new surfaces is
available for CAGD. The conchoids of spheres and ruled
surfaces are not spheres or ruled surfaces anymore, except
in some special cases. In order to overcome this flaw, an
intrinsic construction of conchoids for some geometries is
presented in [7].

It is somehow surprising that conchoids on the sphere have
not attracted the researchers’ interest. Many constructions
that are valid in the Euclidean plane can easily be adapted
for the Euclidean unit sphere. In this article, we shall
demonstrate this at hand of the spherical analoga to con-
choids of lines and circles. The spherical conchoids of
lines are conchoids of greatcircles on the sphere. How-
ever, the spherical conchoids of circles are stil conchoids
of circles but on the sphere.

We shall describe spherical conchoids of lines and circles
and study their algebraic properties at hand of their equa-
tions. Then, we discuss the shape of the principal views of
the spherical conchoids. The principal views are obtained
as orthogonal projections to a triple of mutually orthogonal
planes where at least one of these planes is a plane of sym-
metry of the spherical curve. The resulting image curves
are at most of degree 8 as is the case for the space curves.

For some image curves the degree reduces to 4. Further,
we describe the singularities showing up on the principal
views of the spherical conchoids.

2 Conchoids of a line

AssumeΣ is the Euclidean unit sphere with the equation

Σ : x2+ y2+ z2 = 1 (1)

and let furtherl be aline onΣ, i.e., a greatcircle ofΣ. With-
out loss of generality, we can asssume thatl is the equator
of Σ in the planez= 0 (see Figure 4). Thus, a parametriza-
tion of l reads

L(λ) = (cλ,sλ,0) with λ ∈ [0,2π[ (2)

where we have used the abbreviationscλ := cosλ and
sλ := sinλ.

The focusF of the conchoid shall be at spherical distance
φ ∈ ]0,π/2[ from l . Therefore, its coordinates are

F = (cφ,0,sφ) (3)

(with cφ := cosφ andsφ := sinφ) since it means no restric-
tion to assume that the greatcircle orthogonal tol through
F lies in the planey= 0.

The points on the spherical conchoidc of l with respect to
F at distanceδ ∈ ]0, π

2 [ are found via the analogous con-
struction on the sphere: Choose a pointL on the equatorl ,
join it with F by a greatcircle, and determine the pointsP
at spherical distanceδ from L.

F

P

L

P

δ

δ
x

y

z

l

c

c

φ

λ

Figure 4: Construction of a conchoid on the unit sphere
and the choice of a coordinate system.

We exclude the caseφ = π
2 which yields a pair ofdistance

curvesprovided thatδ 6= 0. These distance curves are cir-
cles onΣ with spherical radiusπ2 − δ in planes parallel to
the equator plane. The choiceδ = 0 shows that the equator
can be seen as a trivial conchoidc= l . The caseφ = π

2 also
yields circles as spherical conchoids ofl .
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Now we are going to derive an analytical description of the
spherical conchoid. Assume that(x,y,z) are the Cartesian
coordinates of a pointX on the conchoid ofl at the spher-
ical distanceδ ∈ ]0, π

2 [ with respect to the pointF . These
coordinates satisfy Eq. (1). Since[L,F ] is a greatcircle of
Σ, the pointsF , L, and the pointX on the conchoid are
coplanar with the center(0,0,0) of Σ. This is equivalent to

sλsφ x− cλsφ y− sλcφ z= 0. (4)

Further, we have LX
⌢

= δ which is measured along the
greatcircle[L,X]. Thus, the canonical scalar product of the
unit vectorsX = (x,y,z) andL = (cλ,sλ,0) yields the co-
sine of the angle subtained by LX

⌢
, and therefore, we have

cλ x+ sλ y= cosδ. (5)

We can eliminateλ from Eqs. (4) and (5): These equations
are linear incλ andsλ, and thus, we can solve this system
for cλ andsλ which gives

cλ =
cosδ(sφ x− cφ z)

sφ(x2+ y2)− cφ xz
,

sλ =
cosδsφ y

sφ(x2+ y2)− cφ xz
.

Sincecλ
2+sλ

2 = 1 holds for anyλ∈C, we arrive at an im-
plicit equation of the spherical conchoidsc of a (spherical)
line l :

c :















cos2 δ
(

(sφ x−cφ z)2+sφ
2y2

)

−(sφ(x2+y2)−cφ xz)2 = 0,

x2+ y2+ z2 = 1.

(6)

Obviously,c is a space curve of degree 8, since it is the
intersection of a quartic surfaceΦ (an example of which is
displayed in Figure 5) with the unit sphere. Thus, we can
say:

Figure 5: A spherical conchoid is the intersection of the
unit sphere with a quartic surface.

Theorem 1. The spherical conchoid c of a (spherical)
line l with respect to the focus F at (spherical) distance
δ ∈ ]0, π

2 [ is an algebraic space curve of degree8 and can
be given by the two equations(6).

It is clear that these curves are spherical so that it is not
worth to be mentioned that Eq. (1) is fulfilled by the coordi-
nates(x,y,z) of a generic point on the conchoid. Therefore,
only the first equation of (6) matters. Thus, such curves are
often called ofspherical degree four.

The three different shapes of conchoids of a line that can
be observed in a plane also appear on the sphere as can be
seen in Figure 6. There are conchoids with loops,i.e., they
have a spherical double point (actually a pair of opposite
double points) with real tangents at the double pointF if
δ > φ. The conchoids with spherical cusps (a pair of op-
posite cusps) appear if, and only if,δ = φ. In the case of
δ < φ, we observe thatF is an isolated (spherical double)
point on the conchoid.

As can be seen from Figures 4 and 6 the spherical con-
choids always consist of two branches. This is caused by
the fact that points in spherical geometry are actually a pair
of antipodal points on the sphere. Therefore, any singular
point on a conchoid also shows up twice. Even the spheri-
cal singularity is a pair of antipodal points.

Figure 6: Three different appearances of spherical conchoids of a theequator:δ > φ (left), δ = φ (middle),δ < φ (right).
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2.1 Principal views of spherical conchoids

The orthogonal projections ofc onto the three planesz= 0,
x = 0, andy = 0 shall be called top view, front view, and
(right) side view. We can state:

Theorem 2. The front and top view of a spherical con-
choid given by Eq.(6) with δ ∈ ]0, π

2[ are of algebraic de-
gree8 and of genus1, i.e., they are elliptic. The right side
view is a rational quartic.

Proof. The equations ofc’s principal views can be ob-
tained from (6) by simply eliminatingz, x, or y. Sincec is
of degree 8, the principal views ofcare at most of degree 8.
Reductions of the degree occur only in cases where the im-
age plane is a plane of symmetry of each branch,i.e., each
point of the image curve is the image of two points onc.
Because of the special choice of the coordinate system, we
see thatc is symmetric with respect to the planey= 0, and
therefore, the side view is covered twice. Hence, it is of de-
gree 4. When computing the resultants of both equations
in Eq. (6) with respect toy, we find the square of

q : (cλx+ sλz)2z2−2sλcλ sin2 δxz

−(c2λ cos2 δ+2sλ
2)z2+ sλ

2sin2 δ = 0

as the equation of the right side view of the spherical con-
choid.

The computations can be carried out by Maple. The
algcurvespackage allows us to compute the singularities
and the genus of an algebraic curve. We summarize the re-
sults in tables: Besides the degree we give the singularities
in terms of homogeneous coordinates (with the homoge-
nizing factor always in the first position), the invariants
[m,d,b], wherem is the multiplicity, d is theδ-invariant,
andb is the branching number.

Note that for an ordinarym-fold point the equationm= b
holds. In any other case we havem> d. The genusg of a
planar algebraic curvec of degreen is the integer

g=
1
2
(n−1)(n−2)−∑

S

dS ,

whereS is the set of singular points onc anddS are the
δ-invariants of all singularities onc. According to the
Milnor-Jung formula, theδ-invariantd can be computed
from the Milnor numberµ and the branching numberb of
a singularity asd = 1

2(µ+b−1). Thus, an ordinaryk-fold
point has invariants[k, 1

2k(k−1),k], see [2, 3].

We have to distinguish between two cases whetherφ 6= δ
or φ = δ.

(1) Let us first assume thatφ 6= δ:

The singularities of the right side view are given in Table
1. Since the genus equals zero, the curve showing up in
the right side view is rational. Note that both singularities
are ideal points of the[x,z]-plane. The point(0 : 1 : 0) is
an isolated tacnode,i.e., a point where a pair of complex
conjugate linear branches touches a real tangent at the real
point (0 : 1 : 0). The remaining singularity is an ordinary
double point. The right side view of the spherical conchoid
is displayed in Figure 7.

right side view

deg(c) = 4
S1 (0 : 1 : 0) [2,2,2]
S2 (0 : 1 :−cotφ) [2,1,2]

genus(c) = 0

Table 1: Singularities on the right side view.

In Figure 8 we can observe another phenomenon which
may not only appear in connection with spherical con-
choids. The algebraic image curve carries points that are
outside the silhouette of the unit sphere. Thus, these points
cannot be the images of points on the spherical curve. The
points on these parts of the curve are calledparasitic.

Figure 7: Right side view of the spherical conchoid shows
no singularity in the affine part. Note that the
image of the focus is not singular.

parasitic branch

parasitic branch

T1 T2

F

δδ
λ

Figure 8: Singularities on the principal views of spherical
conchoids of lines.
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The front view shows a curve of degree eight (shown in
Figure 9). It has a pair of complex conjugate ordinary dou-
ble points(0 : ±i : cφ) at the ideal line of the[y,z]-plane.
Further, there is an ideal 4-fold point withδ-invariant
d = 12. Among the four singularities in the affine part
of the curve (the part we can see in Figure 9) there are
two tacnodes(1 : 0 :±sinδ) which are the images of the
top most pointsT1 andT2 of the conchoid on the front and
back side of the sphere (cf. Figure 8). The fact that the two
linear branches are in contact at the common image of the
top most point is caused by the fact that the spherical con-
choid has horizontal tangents at both points,T1 andT2. The
image of the spherical focusF (antipodal pair) completes
the list of singular points, cf. Table 2.

T  =T1 2

Figure 9: The front view of the spherical conchoid shows
up to four singularties.

front view

deg(c) = 8
S1,2 (1 : 0 :±sφ) [2,1,2]
T1,2 (1 : 0 :±sinδ) [2,2,2]
S5 (0 : 1 : 0) [4,12,4]

S6,7 (0 :±i : cφ) [2,1,2]
genus(c) = 1

Table 2: Singularities on the front view.

The top view has six real ordinary double points (see Fig-
ure 10). These are the image points(±cφ,0) of F and its
antipode. Further, there are four ordinary double points at
(0,w) wherew is a solution of the quartic equation

t4sφ
2+ t2cos2 δ(cφ

2
− sφ

2)− cφ
2cos2 δ = 0.

Two of these double points are real, two are complex con-
jugate. The ideal points(0 : 1 :±i) of the [x,y]-plane are
double points on the top view of the spherical conchoid.
However, they are not ordinary double points, for theirδ-
invariant equals four. At these points the curve hyperoscu-
lates itself. Further, we find tacnodes at(1 : ±cosδ : 0)
being the images of the front and back most points of the

conchoid on the upper and lower hemisphere, see Figures
8 and 10. The singularities of the spherical conchoid’s top
view are listed in Table 3.

Figure 10:The top view of the spherical conchoid shows up
to six singular points.

top view

deg(c) = 8
S1,2 (1 :±cosδ : 0) [2,2,2]
S3,4 (1 :±cφ : 0) [2,1,2]

S5,6,7,8 (1 : 0 :w) [2,1,2]
S9,10 (0 : 1 :±i) [2,4,2]
S11,12 (0 :±sφ : 1) [2,1,2]

genus(c) = 1

Table 3: Singularities on the top view.

(2) Finally, we deal with the caseφ = δ, i.e., the curves
with cusps.

We do not have to go through all the details. There are
some minor changes in the types of some singularitiers
showing up on the different views. Figure 11 shows the
right side view, the front view, and the top view.

right side view

deg(c) = 4
S1 (0 : 1 : 0) [2,2,2]

genus(c) = 1

Table 4: Singularities of the right side view of the curve
with cusp.

The right side view of the spherical conchoid with cusp
shows no singularity in the affine part. There is only one
ideal point which is a tacnode, cf. Table 4. In this case
the curve is of degree four, but nevertheless, it has genus
1 and is, therefore, elliptic since the only singularity has
δ-invariantd = 2.
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Figure 11:From left to right: the right side view, the front view, and the top view of the spherical conchoid with
cusp. The front and top view show triple points that are composed of cusps and linear branches.

front view

deg(c) = 8
S1,2 (1 :±sinδ : 0) [3,3,2]
S3 (0 : 1 : 0) [4,12,4]

S4,5 (0 :±i : cosδ) [2,1,2]
genus(c) = 1

Table 5: Singularities of the front view of the curve with
cusp.

The front view shows a pair of triple points. Here, the im-
ages of the top most points and the image of the focusF
coincide. These triple points haveδ-invariantd = 3 and
branching numberb = 2, cf. Table 5. Thus, these triple
points are composed singularities, consisting of an ordi-
nary cusp sitting on a linear branch. Further, there are two
complex conjugate ideal singular points on the front view.

top view

deg(c) = 8
S1,2 (1 :±cosδ : 0) [3,3,2]
S3,4 (0 : 1 :±i) [2,1,2]
S5,6 (0 :±i sinδ : 1) [2,1,2]

S7,8,9,10 (1 : 0 :w) [2,1,2]
genus(c) = 1

Table 6: Singularities of the top view of the curve with
cusp.

Again, the top view shows more singularities then any
other view. The two triple points (see Table 6) showing
up are composed singularities of the same type as those in
the front view. Furthermore, there are four ordinary double
points (two real ones and a pair of complex conjugate) at
(1 : 0 :w) wherew is a solution of the quartic equation

t4sφ
2
− t2cos2 δ(2− cos2 δ)− cos4 δ = 0.

According to the genus formula the front and top view are
of genus 1, and thus, elliptic. �

There is a special type of spherical conchoid if we choose
δ = π

2 . In this case the conchoid construction assigns to
each pointL ∈ l the absolute polar point,i.e., theorthogo-
nal point. Hence, the two branches toδ =−

π
2 and toδ = π

2
are identic since opposite points represent the same point.
All the three principal views oforthogonal conchoidsare
curves of degree four. Figure 12 shows an axonometric
view of some orthogonal conchoids together with the three
principal views of them.

Figure 12:Above: Some orthogonal conchoids of the equa-
tor. Below: Right side view, front view, and top
view of some orthogonal conchoids.

The curves in the right side view are two-fold hyperbolae
in a pencil of the second kind with the images of the north
and south pole as well as the ideal point of thex-axis for
the base points.
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2.2 Constructive approach

2.2.1 Planar and spherical tangents

The kinematic generation of conchoids allows us to con-
struct tangents to conchoids in the plane, see for example
[14]. The same holds true in the spherical case, cf. [6, 12].

L

F

P

X

t

l

c

Figure 13:The instantaneous pole P of the motion of the
line [L,X] with respect to the fixed system is
found as the intersection of two normals.

In Figure 13, the construction of the tangent to the planar
conchoidc at some pointX is shown. The kinematic gen-
eration of the curve shows the way: In order to find the
instantaneous poleP of the motion of the line[L,F ] we
observe thatL is gliding on the linel , and thus, the pole
of the motion of[L,F ] with respect to the fixed systeml
is the ideal point of the lines orthogonal tol . Since[L,F ]
is gliding throughF and rotating aboutF at the same time
the instantaneous poleP is also contained in the line or-
thogonal to[L,F ] throughF, see [14]. The construction
also works at the double point since this is a singularity of
the algebraic curve but not for the trace ofX. The tangent
t of c at X is orthogonal to[P,X].

L

F

P

X

c

l

t

c

Figure 14:The construction of the instantaneous pole P
and the tangent t on the sphere.

Figure 14 illustrates the construction of the tangentt to
the spherical conchoid at some pointX. Actually, the pla-
nar construction has to be translated into the spherical set-
ting: We intersect the greatcircle orthogonal to the equator
l through the pointL with that greatcircle throughF that
is orthogonal to the greatcircle joiningL andF and obtain
the instantaneous spherical poleP (actually a pair of an-
tipodal points). The spherical normal of the conchoid at
X is the great circle joiningX andP. Finally, the spheri-
cal tangentt is the greatcircle orthogonal to the spherical
normal through the pointX.

2.2.2 Planar and spherical osculating circles

Figure 15 shows the construction of the osculating circleo
at a generic pointX on a planar conchoidc. We use Bo-
billier’s construction (see [14]). For that purpose we have
to find two pairs of assigned points of the quadratic trans-
formation that maps a pointU to its center of curvature
U⋆. The pointL is moving on a straight linel , and thus,
the center of its path is the ideal pointL⋆ of all lines or-
thogonal tol . Further, we observe that the line[L,F ] is
rotating aboutF while gliding throughF . Thus,F is the
envelope of[L,F ] andF = A⋆ is the center of curvature for
the trace of the ideal pointA= [L,F ]⊥ of all lines orthog-
onal to [L,F ]. The two pairs(L,L⋆) and(A,A⋆) uniquely
define thequadratic curvature mapping.

F=A

L
L

L

A

A

A

t

P

X

X

Q

l c

o

AX

*
*Q

AL

*

*

Figure 15:Bobilier’s construction simplifies in the case of
the conchoid.

Now, we can apply Bobbilier’s construction to any of the
pairs(L,L⋆) or (A,A⋆) in order to complete(X,X⋆) with
the yet unknown pointX⋆. Note that[L,A]∩ [L⋆,A⋆] =:
QAL defines an auxiliary lineqAL := [QAL,P] with the prop-
erty<) (qAL, p) = <) (qAX, p) (after proper orientation), see
[14], wherep is the pole tangent,i.e., the common tangent
to the two polhodes atP.

In the case of the conchoid it is not necessary to con-
struct the pole tangentp since we only have to add an
angle as shown in Figure 15. On the auxiliary lineqAX

we find the pointQAX := [A,X]∩ qAX, and finally,X⋆ =
[X,P]∩ [A⋆,QAX].
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In order to find the spherical osculating circleo (as shown
in Figure 16) we translate all the constructions done in
the planar case to the sphere. We are allowed to do this
since the quadratic curvature mapping can be lifted to the
sphere. We consider the Euclidean unit sphere to be placed
such that it touches the Euclidean plane (carrying the pla-
nar figure) at the instantaneous poleP. Then, we perform
a gnomonic projection from the plane to the sphere. The
center of the projection is the center of the sphere, and thus,
the projectively extended Euclidean plane is mapped to the
sphere model of projective geometry. The gnomonic pro-
jection is locally (aroundP) conformal, and therefore, the
quadratic curvature mapping is lifted to that on the sphere.

Figure 16 shows the construction of the spherical center of
curvature. At this point we shall remark that the spherical
osculating circleo is not a greatcircle onΣ, except in those
cases whereX is a spherical point of inflection. The spher-
ical radius of curvature equals the spherical distance ofX
and ist center of curvatureX⋆.

l

F
X

P

c

c

L

X

o
Q
LX

Q
AL

*

Figure 16:The spherical version of Bobillier’s construc-
tion yields the spherical center of curvature X⋆

for an arbitrary point X on the spherical con-
choid.

3 Conchoids of a circle

The construction of a conchoid is independent of the
choice of the directrix curve. If we replace the linel by
a circle, we obtain the conchoids of circles. The analytic
as well as the constructive treatment of conchoids of circles
does not differ that much from the affore mentioned types
of conchoids. Since circles can also be found on a sphere,
we can also find conchoids of circles on the sphere. We
will not discuss the conchoids of a circle in the plane and
on the sphere in all details. We shall just show that the
equations of these special spherical curves can be derived
in a similar way.

Conchoids of a circle in the Euclidean plane are of alge-
braic degree 6. Surprsingly, their spherical counter parts
are of algebraic degree 8 (or, equivalently, of spherical de-
gree 4), although we would expect them to be of degree
12. Some spherical conchoids of a circle are displayed in
Figure 17.

The computation of an equation of spherical conchoids
slightly differs from that of spherical conchoids of (spher-
ical) lines.

Again, we assume that the focusF lies in y= 0 at latitude
φ ∈ [0, π

2 [. It means no restriction to assume thatF is a
point on the upper hemisphere. There is a change in the
directrix l which shall henceforth be the circle of latitiude
β 6= 0, π

2. Thus, the directrix is given by

L(λ)=(cβcλ,cβsλ,sβ) with λ ∈ [0,2π[ (7)

(with cβ := cosβ andsβ := sinβ). Here, we should remark
that this restricts the class of spherical conchoids of a cir-
cle. In this case, there exists a greatcircle throughF in a
plane parallel to the plane ofl which, in general, needs not
be true. However, we deal with the simpler type.

Figure 17:Spherical conchoids of a circle show cusps, and two types of double points.
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Figure 18:Spherical conchoids as intersections of a quartic and the unit sphere.

Let X = (x,y,z) be the point on the conchoid ofl with re-
spect toF at spherical distanceδ ∈ [0, π

2 [. Note thatX is
also a point on the unit sphere, and therefore,x2+y2+z2 =
1 holds. The collinearity condition ofF , X, andL from Eq.
(4) now changes to

sφsλ x+(cφtβ − cλsφ)y− cφsλ z= 0 (8)

with tβ := tanβ. Between the pointl(t) on the directrix and
the pointX on the conchoid we measure the spherical dis-
tanceδ which is a value with sign. Consequently, Eq. (5)
modifies to

cλcβ x+ sλcβ y+ sβ z= cosδ. (9)

Like in the case of the spherical conchoids of lines, we
solve the system of linear equations (8), (9) with respect to
cλ andsλ. Sincecλ

2+ sλ
2 = 1 for all λ ∈ C, we have the

following two equations that have to be satisfied by the co-
ordinates of a point on the spherical conchoidc of a circle
l :

c :



















































































(2cφ
2−1)x2− sφ

2y4

+(cφ
2−2sφ

2)x2y2

+2cφsφ(x2z+ y2)x
−4cφsφsβ cosδ(y+ x)y2

+2sβ cosδ(2cφ
2−1)x2z

−2sφ
2sβ cosδy2z

+((cos2 δ+sβ
2)(1−2cφ

2)−cφ
2)x2

+(cos2 δ(1+2cφ
2)+ sφ

2sβ
2)y2

−2cφsφ(cosδ2+ sβ
2)xz

+2cφsβ cosδ(2sφx− cφz)
cφ

2(cos2 δ+ sβ
2) = 0,

x2+ y2+ z2 = 1.

(10)

From that we can infer in analogy to Theorem 1:

Theorem 3. The spherical conchoids of a circle at latitude
β with respect to a point F is an algebraic curve of degree
8 or of spherical degree4. The coordinates of all points on
the spherical conchoid fulfill Equation(10).

The spherical conchoid of a circle is the intersection of a
quartic surface with the sphereΣ. Some examples of the
quartic surface are displayed in Figure 18. Like in the case
of spherical and planar conchoids of lines, the spherical
conchoids of circles can have cusps, isolated, and ordinary
double points, see Figure 17.

Equations of the principal views (right side view, front
view, top view) can be easily derived by eliminating co-
ordinates (y, x, z) from the two equations given in Eq. (10).
It is not necessary to go into all the details of the compu-
tations and discussions. They are similar to those in the
previous section. Now, we can state (cf. Theorem 2):

Theorem 4. The front and top view of spherical conchoids
of circle are algebraic curves of degree8 and genus1, i.e.,
they are elliptic. The right side view is an elliptic quartic.
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GÉZA CSIMA
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ABSTRACT

The theory of the isoptic curves is widely studied in the

Euclidean plane E2 (see [1] and [13] and the references

given there). The analogous question was investigated by

the authors in the hyperbolic H2 and elliptic E2 planes

(see [3], [4]), but in the higher dimensional spaces there is

no result according to this topic.

In this paper we give a natural extension of the notion

of the isoptic curves to the n-dimensional Euclidean space

En (n≥ 3) which are called isoptic hypersurfaces. We de-

velope an algorithm to determine the isoptic hypersurface

HD of an arbitrary (n−1) dimensional compact parametric

domain D lying in a hyperplane in the Euclidean n-space.

We will determine the equation of the isoptic hypersur-

faces of rectangles D ⊂ E2 and visualize them with Wol-

fram Mathematica. Moreover, we will show some possible

applications of the isoptic hypersurfaces.

Key words: isoptic curves, hypersurfaces, differential ge-

ometry, elliptic geometry

MSC2010: 53A05, 51N20, 68A05

O izooptǐckim hiperplohama u

n-dimenzionalnom euklidskom prostoru

SAŽETAK

Teorija o izooptičkim krivuljama dosta se proučava u eu-

klidskoj ravnini E2 (vidi [1] i [13] te u referencama koje se

tamo mogu naći). Autori su proučavali analogno pitanje

u hiperboličkoj H2 i eliptičkoj ravnini E2 (vidi [3], [4]),

medutim u vǐsedimenzionalnim prostorima nema rezultata

vezanih za ovu temu.

U ovom članku dajemo prirodno proširenje pojma

izooptičkih krivulja na n-dimenzionalni euklidski pro-

stor En (n ≥ 3) koje zovemo izooptičke hiperplohe.

Razvijamo algoritam kojim odredujemo izooptičke hiper-

plohe HD proizvoljne (n− 1)-dimenzionalne kompaktne

parametarske domene D koja leži u hiperravnini u n-
dimenzionalnom euklidskom prostoru.

Odredit ćemo jednadžbu izooptičkih hiperploha pravokut-

nika D ⊂ E2 i vizualizirati ih koristeći program Wolfram

Mathematica. Štovǐse, pokazat ćemo neke moguće pri-

mjene izoptičkih hiperploha.

Ključne riječi: izooptičke krivulje, hiperplohe, diferenci-

jalna geometrija, eliptička geometrija

1 Introduction

Definition 1 Let X be one of the constant curvature plane
geometriesE2, H2, E2. The isoptic curveC α of an ar-
bitrary given plane curveC of X is the locus of points P
whereC is seen under a given fixed angleα (0 < α < π).

An isoptic curve formed from the locus of two tangents
meeting at right angle(α = π

2) are called orthoptic curve.
The name isoptic curve was suggested by C. Taylor in his
work [12] in 1884.

In the Euclidean planeE2 the easiest case ifC is a line
segment then the set of all points (locus) for which a line
segment can be seen under angleα contains two arcs in
both half-plane of the line segment, each are with central
angle 2α. In the special caseα = π

2 , we get exactly the

so-called Thales circle (without the endpoints of the given
segment) with center the middle of the line segment.

Further curves appearing as isoptic curves are well stud-
ied in the Euclidean plane geometryE2, see e.g. [8],[13].
In [1] and [2] can be seen the isoptic curves of the closed,
strictly convex curves, using their support function. The
papers [14] and [15] deal with curves having a circle or an
ellipse for an isoptic curve. Isoptic curves of conic sections
have been studied in [6], [8] and [11]. A lot of papers con-
centrate on the properties of the isoptics e.g. [9], [7], [10]
and the references given there.

In the hyperbolic and elliptic planesH2 andE2 the isop-
tic curves of segments and proper conic sections are deter-
mined by the authors ([3], [4], [5]).

In the higher dimensions by our best knowledge there are
no results in this topic thus in this paper we give a natu-
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ral extension of the Definition 1 in then-dimensional Eu-
clidean spaceEn. Moreover, we develope a procedure
to determine the isoptic hypersurfaceHD of an arbitrary
(n−1) dimensional compact parametric domainD lying
in a hyperplane in the Euclidean space. We will determine
the equation of the isoptic hypersurfaces (see Theorem 1)
of rectanglesD ⊂ E2 and visualize them with Wolfram
Mathematica (see Fig. 2-3). Moreover, we will show some
possible applications of the isoptic hypersurfaces.

D

P

x

x

x
2

3

1

O

Figure 1:Projection of a compact domainD to unit
sphere inE3

2 Isoptic hypersurface of a compact domain
lying in a hyperplane of En

In Definition 1 we have considered that, the angle can be
measured by the arc length on the unit circle around the
point. From this statement, Definition 1 can be extended to
then-dimensional Euclidean spaceEn.

Definition 2 The isoptic hypersurfaceH α
D

in En (n ≥ 3)
of an arbitrary d dimensional compact parametric do-
main D(2 ≤ d ≤ n) is the locus of points P where the
measure of the projection ofD onto the unit(n− 1)-
sphere around P is a given fixed valueα (0 < α <

π
n−1

2

Γ( n−1
2 )

)
[
Γ(t) =

∫ ∞
0 xt−1e−xdt

]
(see Fig. 1).

We consider a compact parametric(n − 1) (n ≥ 3)-
dimensional domainD lying in a hyperplane ofEn. We
can suppose the next form of parametrization:
φ(x,y) plane surface

φ̃φφ(u1,u2, . . . ,un−1) =




f̃1(u1,u2, . . . ,un−1)

f̃2(u1,u2, . . . ,un−1)
...

f̃n−1(u1,u2, . . . ,un−1)
0




, (2.1)

whereui ∈ [ai ,bi ], (ai,bi ∈ R), (i = 1, . . . ,n−1).

For the pointP(x1,x2, . . . ,xn) = P(x) the inequalityxn > 0
will be assumed. Projecting the surface onto the unit
sphere with centreP, we have the following parametriza-
tion:

φφφ(u1,u2, . . . ,un−1) =

=




f1(u1,u2, . . . ,un−1)
f2(u1,u2, . . . ,un−1)

...
fn(u1,u2, . . . ,un−1)


 =




f1(u)
f2(u)

...
fn(u)


 . (2.2)

Here, if i 6= n we have

fi(u)=
f̃i(u1, . . . ,un−1)−x1√

( f̃1(u1, . . . ,un−1)−x1)2 + · · ·+( f̃n−1(u1, . . . ,un−1)−xn−1)2 +(xn)2
,

else(i = n)

fn(u) =
−xn√

( f̃1(u1, . . . ,un−1)−x1)2 + · · ·+( f̃n−1(u1, . . . ,un−1)−xn−1)2 +(xn)2
.

Now, it is well known, that the measure of then−1-surface
can be calculated using the forumla below:

S(x1,x2, . . . ,xn) =

=
∫ b1

a1

∫ b2

a2

. . .
∫ bn−1

an−1

√
detG dun−1 dun−2 . . .du1 (2.3)

by successive integration, where

G = JTJ =

=




∂ f1
∂u1

∂ f1
∂u2

. . . ∂ f1
∂un−1

∂ f2
∂u1

∂ f1
∂u2

. . . ∂ f1
∂un−1

...
...

. . .
...

∂ fn−1
∂u1

∂ fn−1
∂u2

. . . ∂ fn−1
∂un−1




T

·

·




∂ f1
∂u1

∂ f1
∂u2

. . . ∂ f1
∂un−1

∂ f2
∂u1

∂ f1
∂u2

. . . ∂ f1
∂un−1

...
...

. . .
...

∂ fn−1
∂u1

∂ fn−1
∂u2

. . . ∂ fn−1
∂un−1




.

The isoptic hypersurfaceH α
D by the Definition 2 is the fol-

lowing:

H α
D = {x ∈ En|α = S(x1,x2, . . . ,xn)}

In the general case, the isoptic hypersurface can be deter-
mined only by numerical computations. In the next section
we show an explicite application of our algorithm.
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3 Isoptic surface of the rectangle

Now, let suppose thatn = 3 andD ⊂ E2 is a rectangle
lying in the[x,y] plane in a given Cartesian coordinate sys-
tem. Moreover, we can assume, that it is centered, so the
parametrization is the following:

φ̃φφ(x,y) =




x
y
0


 , (3.1)

where x ∈ [−a,a] and y ∈ [−b,b] (a,b ∈ R). And the
parametrization of the projection fromP(x0,y0,z0) can be
seen below:

φφφ(x,y) =




x−x0√
(x−x0)2+(y−y0)2+z2

0
y−y0√

(x−x0)2+(y−y0)2+z2
0

−z0√
(x−x0)2+(y−y0)2+z2

0


 . (3.2)

Remark 1 It is clear, that the computations is similar if
D is a normal domain concerning to x or y on the plane.
The difference is appered only on the boundaries of the in-
tegrals.

Now, we need the partial derivatives, to calculate the sur-
face area:

φφφx(x,y) =




(y−y0)
2+z2

0

((x−x0)2+(y−y0)2+z2
0)3/2

−(x−x0)(y−y0)

((x−x0)2+(y−y0)2+z2
0)3/2

z0(x−x0)

((x−x0)2+(y−y0)2+z2
0)3/2


 ,

φφφy(x,y) =




−(x−x0)(y−y0)

((x−x0)2+(y−y0)2+z2
0)3/2

(x−x0)2+z2
0

((x−x0)2+(y−y0)2+z2
0)3/2

z0(y−y0)

((x−x0)2+(y−y0)2+z2
0)3/2




/medskip
Taking the cross product of the vectors above, we obtain:

φφφx(x,y)×φφφy(x,y) =




z0(x0−x)

((x−x0)2+(y−y0)2+z2
0)2

z0(y0−y)

((x−x0)2+(y−y0)2+z2
0)2

z2
0

((x−x0)2+(y−y0)2+z2
0)2




Now we can substitute
∣∣φφφx(x,y)×φφφy(x,y)

∣∣ into formula
(2.3) to get the spatial angle:

S(x0,y0,z0) =

∫ +a

−a

∫ +b

−b

|z0|
(
(x−x0)2 +(y−y0)2 +z2

0

) 3
2

dydx= (3.3)

arctan

(
(a−x0)(b−y0)

z0

√
(a−x0)2+(b−y0)2+z2

0

)
+

arctan

(
(a+x0)(b−y0)

z0

√
(a+x0)2+(b−y0)2+z2

0

)
+

arctan

(
(a−x0)(b+y0)

z0

√
(a−x0)2+(b+y0)2+z2

0

)
+

arctan

(
(a+x0)(b+y0)

z0
√

(a+x0)2+(b+y0)2+z2
0

)
.

Remark 2 It is easy to see, if a→ ∞ and b→ ∞, then the
angle tendst to2π for every z0. This implies some kind
of elliptic properties. The normalised cross pruduct of the
two partial derivatives can be interpreted as a weight func-
tion on this elliptic plane. Now, if we have a domain on the
plane, we can integrate this function over the domain, to
obtain the angle. But the symbolic integral for a given do-
main almost never works, so in this case, it is suggested
also, to use numerical approach.

Using the results abowe, we can claim the following theo-
rem:

Theorem 1 Let us given a rectangleD ⊂ E2 lying in the
[x,y] plane in a given Cartesian coordinate system. More-
over, we can assume, that it is centered at the origin with
sides(2a,2b). Then the isoptic surface for a given spa-
tial angleα (0 < α < 2π) is determined by the following
equation:

α = arctan

(
(a−x)(b−y)

z
√

(a−x)2+(b−y)2+z2

)
+

arctan

(
(a+x)(b−y)

z
√

(a−x)2+(b−y)2+z2

)
+

arctan

(
(a−x)(b+y)

z
√

(a−x)2+(b−y)2+z2

)
+

arctan

(
(a+x)(b+y)

z
√

(a−x)2+(b−y)2+z2

)
.

In the following figures, there can be seen the isoptic sur-
face of the rectangle:
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Figure 2: 2a = 9, 2b = 13,α = π
2

Figure 3: 2a = 9, 2b = 13,α = π

Figure 4: 2a = 7, 2b = 11,α = π
6

Figure 5: 2a = 11, 2b = 5, α = π
12

Figure 6: 2a = 7, 2b = 13,α = π
2 (both half-spaces)

Figure 7: 2a = 7, 2b = 13,α = π
4 (both half-spaces)
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Remark 3 The figures show us, that this topic has severeal
applications, for example designing stadiums, theaters or
cinemas. It can be interesting, if we have a stadium, which
has the property, that from every seat on the grandstand,
the field can be seen under a same angle.

Designing a lecture hall, it is important, that the screen or
the blackboard is clearly visible from every seat. In this
case, the isoptic lecture hall is not feasible, but it can be
optimized.

Figure 8:MetLife Stadium:
http://www.bonjovi.pl/forum/topics58/

25-27072013-east-rutherford-vt3278.htm
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ABSTRACT

The quasi-hyperbolic plane is one of nine projective-metric

planes where the absolute figure is the ordered triple

{ j1, j2,F}, consisting of a pair of real lines j1 and j2
through the real point F. In this paper some basic geomet-

ric notions of the quasi-hyperbolic plane are introduced.

Also the classification of qh-conics in the quasi-hyperbolic

plane with respect to their position to the absolute figure

is given. The notions concerning the qh-conic are intro-

duced and some selected constructions for qh-conics are

presented.

Key words: quasi-hyperbolic plane, perpendicular points,

central line, qh-conics classification, osculating qh-circle

MSC2010: 51A05, 51M10, 51M15

Uvod u planimetriju kvazi-hiperboličke ravnine

SAŽETAK

Kvazihiperbolička ravnina je jedna od devet projektivno

metričkih ravnina kojoj je apsolutna figura ured-ena troj-

ka { j1, j2,F}, gdje su j1 i j2 realni pravci koji se sijeku u

realnoj točki F. U ovom članku uvodimo neke osnovne

pojmove za kvazihiperboličku ravninu, te dajemo klasi-

fikaciju konika u odnosu na njihov položaj prema apsolut-

noj figuri. Nadalje, uvesti ćemo pojmove vezane uz konike

u kvazihiperboličkoj ravnini i pokazati nekoliko izabranih

konstrukcija vezanih uz konike.

Ključne riječi: kvazihiperbolička ravnina, okomite točke,

centrala, klasifikacija qh-konika, oskulacijske qh-kružnice

1 Introduction

In the second half of the 19th century F. Klein opened a
new field for geometers with his famous Erlangen program
which is the study of the properties of a space which are in-

variant under a given group of transformations. Klein was

influenced by some earlier research of A. Cayley, so today

it is known that there exist nine geometries in plane with

projective metric on a line and on a pencil of lines which

are denoted as Cayley-Klein projective metrics. Hence,

these plane geometries differ according to the type of the

measure of distance between points and measure of angles

which can be parabolic, hyperbolic, or elliptic. Further-

more, each of these geometries can be embedded in the real

projective planeP2(R) where an absolute figure is given

as non-degenerated or degenerated conic [4], [5], [12] (for

space and n-dimension see [11]).

In this article the geometry, denoted asquasi-hyperbolic,

with hyperbolic measure of distance and parabolic mea-

sure of angle will be presented.

2 Basic notation in the quasi-hyperbolic
plane

In the quasi-hyperbolic plane (further in text qh-plane) the

metric is induced by a real degenerated conic i.e. a pair of

real lines j1 and j2 incidental with the real pointF. The

lines j1 and j2 are called theabsolute lines, while the point

F is called theabsolute point. In the Cayley-Klein model

of the qh-plane only the points, lines and segments inside

of one projective angle between the absolute lines are ob-

served. In this article all points and lines of the qh-plane

embedded in the real projective planeP2(R) are observed.

There are three different positions for the absolute triple

{ j1, j2,F}: neither of the absolute elements are at infinity,

only the absolute point is at infinity and the absolute point

and one absolute line are at infinity (see Fig. 1). The first

position of the absolute triple is used for constructions in

this article.
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Figure 1

For the points and the lines in the qh-plane the following
terms are defined:

• isotropic lines- the lines incidental with the absolute
pointF ,

• isotropic points- the points incidental with one of the
absolute linesj1 or j2,

• parallel lines- two lines which intersect at an isotropic
point,

• parallel points- two points incidental with an isotropic
line,

• perpendicular lines- if at least one of two lines is an
isotropic line,

• perpendicular points- two points (A andB) that lie on a
pair of isotropic lines (a andb) that are in harmonic rela-
tion with the absolute linesj1 and j2.

Furthermore, an involution of pencil of lines(F) having
the absolute lines for double lines is called theabsolute
involution, denoted asIQH. This is a hyperbolic involu-
tion on the pencil(F) where every pair of corresponding
lines is in a harmonic relation with the double linesj1 and
j2 ([1], p.244-245, [6], p.46). Notice that every pair of
perpendicular points lie on a pair ofIQH corresponding
lines. Hence, the perpendicularity of points in qh-plane is
determined by the absolute involution, thereforeIQH is a
circular involution in the qh-plane ([7], p.75).

Remark. Any two isotropic points on the same absolute
line are perpendicular and parallel. Any two lines from a
pencil(F) are perpendicular and parallel.

3 Qh-conics classification

There are nine types of regular qh-conics classified accord-
ing to their position with respect to the absolute figure:

• qh-hyperbola- a qh-conic which has a pair of real tan-
gent lines from the absolute point,

- hyperbola of type 1(h1) - intersects each absolute line
in a pair of real and distinct points,

- hyperbola of type 2(h2) - intersects one absolute line
in a pair of real and distinct points and another abso-
lute line in a pair of imaginary points,

- hyperbola of type 3(h3) - intersects each absolute line
in a pair of imaginary points,

- special hyperbola of type 1(hs1) - one absolute line is
a tangent line and another absolute line intersects the
qh-conic in a pair of real and distinct points,

- special hyperbola of type 2(hs2) - one absolute line is
a tangent line and another absolute line intersects the
qh-conic in a pair of imaginary points,

• qh-ellipse(e) - a qh-conic (imaginary or real) which has
a pair of imaginary tangent lines from the absolute point,

• qh-parabola(p) - a qh-conic passing through the abso-
lute point i.e. both isotropic tangent lines coincide,

- special parabola(ps) - a qh-parabola whose isotropic
tangent is an absolute line,

• qh-circle(k) - a qh-conic for which the tangents from the
absolute point are the absolute lines.

In the projective model of the qh-plane every type of a qh-
conic can be represented with the Euclidean circle without
loss of generality (see Fig. 2). This fact simplifies the con-
structions in the qh-plane.

j
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Figure 2
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Furthermore every qh-conicq, except qh-parabolae, in-
duces an involutionφq on the pencil(F) where the double
lines are the isotropic tangents of the qh-conicq, and the
corresponding lines of the involutionφq are calledconju-
gate lines. Notice that every qh-ellipse induces an elliptic
involution, every qh-hyperbola induces a hyperbolic in-
volution and every qh-circle induces an involution that
coincides with the absolute involutionIQH.

Remark. A qh-conic is calledequiform if the isotropic
tangent lines of the qh-conic are in harmonic relation with
the absolute linesj1 and j2. In terms of the above men-
tioned involutions a qh-conicq is equiform if the absolute
involution IQH is commutative with the involutionφq in-
duced by the qh-conicq. Notice that only qh-ellipses, qh-
hyperbolae of type 2 and qh-circles can be equiform [2],
[3].

In the following some basic notions related to a qh-conic
in the qh-plane are defined:

• The polar line of the absolute pointF with respect to a
qh-conic is called thecentral line cor themajor diame-
ter of the qh-conic (see Fig. 3). All qh-conics, except qh-
parabolas, have a non-isotropic central line. The central
line of a qh-parabola is its isotropic tangent line, while for
the special parabola it is an absolute line.

h
3

j
2

j
1F

c

Figure 3

• Thedirectricesof a qh-conic are (non-absolute) lines in-
cident with the isotropic points of the qh-conic, i.e. lines
incidental with the intersection points of the qh-conic with
the absolute linesj1 and j2. A qh-conic can have none,
one, two or four directricesfi , i ∈ {1,2,3,4} (see Fig. 4).
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Figure 4

• The pole of the directrix with respect to a qh-conic
is called afocus of the qh-conic. The number of foci
Fi , i ∈ {1,2,3,4}, is equal to the number of directrices (see
Fig. 4).

• The lines that are incident with the opposite foci are
called isotropic diametersof a qh-conic (see Fig. 5). Es-
pecially for the qh-circles, which have one focus, the
isotropic diameters are the lines of the pencil(F). Hence
a qh-conic can have none, one, two or infinitely many
isotropic diametersoi, i ∈ {1,2}.

• Theqh-centersof a qh-conic are the points of intersec-
tion of the isotropic diameters and the central line of the
qh-conic. A qh-conic can have none, one, two or infinitely
many qh-centersSi , i ∈ {1,2} (see Fig. 5).

• The intersection points of a qh-conic with its isotropic
diameters are calledverticesof the qh-conic (see Fig. 5).
A qh-conic can have four, two, one or none verticesTi , i ∈
{1,2,3,4}.
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The absolute involutionIQH can be observed as a point
range involution on any non-isotropic line, hence it can be
observed on the central line of a qh-conic, except for qh-
parabolae. Also the involutionφq on a pencil(F) induced
by a qh-conicq can be observed as the involutionϕq of
a point range on the central linec of the qh-conicq, and
two corresponding points of involutionϕq are called con-
jugate points. Therefore, the qh-centers for the qh-ellipses
and qh-hyperbolae can be found as a pair of perpendicular

and conjugate points on the central line, and the isotropic
diameters as the perpendicular and conjugate lines of the
pencil (F). The construction will be shown later. Notice
that because the involution induced by a qh-circle coin-
cides with the absolute involution all pairs of conjugate
points on the central line of the qh-circle are perpendic-
ular points. Hence any point on the central line is its center
and every line of the pencil(F) is its isotropic diameter.

Aforementioned qh-conics and notions can be summarized in the following table:

Qh-Conic Directrix Focus Isotropic diameter Center Vertex

Ellipse 4 real 4 real 2 real 2 real 4 real
e

Hyperbola 4 real 4 real 2 real 2 real 2 real+
h1 2 imaginary

Hyperbola 4 imaginary 4 imaginary 2 imaginary 2 imaginary 4 imaginary
h2

Hyperbola 4 imaginary 4 imaginary 2 real 2 real 2 real+
h3 2 imaginary

Parabola 2 real 2 real 1 real 1 real 2 real
p

Special 0 0 0 0 0
parabola

ps

Special 2 real 2 real 1 real 1 real 1 real
hyperbola

hs1

Special 2 imaginary 2 imaginary 1 real 1 real 1 real
hyperbola

hs2

Circle 1 real 1 real infinite infinite 0
c

Table 1

For parabolae and special hyperbolae see figure 6.
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Remark. The qh-plane is dual to the pseudo-Euclidean
(Minkowski) plane where the metric is induced by a real
line and two real points incident with it. Therefore the
notions defined above can be explained as duals of the
Minkowski plane.

The conics in pseudo-Euclidean plane (pe-plane) are clas-
sified in nine subtypes, hence the classification of qh-
conics was based on [3], [9], [10]. Furthermore, the afore-
mentioned elements for qh-conics can be presented as fol-
lows:

• the central line is a dual of the center of a conic in the
pe-plane,

• the directrices are a dual of the foci of a conic in the
pe-plane,

• the foci are a dual of the directrices of a conic in the
pe-plane,

• the qh-centers are dual to the axes of a conic in the pe-
plane.

The dual of the isotropic diameters are the intersections of
the axes with the absolute line, but they were not of special
interest in the pe-plane. Also the dual of the vertices in
qh-plane are the tangents to the conic in pe-plane from the
above mentioned intersections. It should be emphasized
that the dual of the vertices in pe-plane are tangents to the
qh-plane from the qh-centers. Since the axes in pe-plane
and qh-centers in qh-plane are dual, therefore it was not
chosen in this article to observe the vertices of a qh-conic
as a line.

Furthermore, the pairs of conjugate points on the central
line of the involutionϕq induced by a qh-conicq in the
qh-plane are dual to the pairs of lines on which lie the con-
jugate diameters of a conic in the pe-plane. Consequently,
the aforementioned property of qh-centers for a qh-circle
is dual to the fact that all pairs of conjugate diameters of a
pseudo-Euclidean circle are perpendicular.

4 Some construction assignments

4.1 Qh-centers and isotropic diameters of the qh-
ellipses and qh-hyperbolae

Let a qh-conicq be given, that is not a qh-parabola. As
already mentioned, a pair of conjugate and perpendicu-
lar points on the central linec will be qh-centers of a qh-
conic. In order to construct these qh-centers for the given

qh-conicq we observe the involutionφq induced by the qh-
conicq and the absolute involutionIQH. These pencils will
be supplemented by the same Steiner’s conics, which is an
arbitrary chosen conic throughF . Let a pair of isotropic
linesn andn1 be the double lines of the involutionφq. The
involutions IQH andφq determine two involutions on the
conics. Let the pointsO1 andO2 be denoted as the centers
of these involutions. The lineO1O2 intersects the conics
at two pointsI1 andI2. Isotropic lines (o1 = FI1, o2 = FI2)
through these points are a common pair of these two invo-
lutions. Hence, lineso1 ando2 are isotropic diameters for
the given qh-conicq. The intersection pointsS1 andS2 of
o1 ando2 with the central linec are qh-centers of the given
qh-conic. Figure 7 shows the described construction for
hyperbola of type 3.

The construction is based on the Steiner’s construction
([6], p.26, [7], p.74-75).

Notice that for the hyperbola of type 2 the lineO1O2 in the
construction will not intersect the conics, and therefore it
has a pair of imaginary isotropic diameters. In general, two
involutions on a same pencil (line) have a common pair of
real corresponding lines (points) if at least one of them is
an elliptic involution. If both of the involutions are hyper-
bolic then they have a common pair of real corresponding
lines (points) if both double lines of one involution are be-
tween the double lines (points) of the other involution. In
the other case the common pair is a pair of imaginary lines
([6], p.60).
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4.2 Osculating qh-circle of a qh-conic

Generally, it is know that two arbitrary conics have four
common tangents, therefore the same applies for a conic
and a circle. Furthermore, if three of this common tan-
gents coincide then the circle is called a osculating circle
of the conic at the point which is the point of tangency of
the triple tangent. Hence, there is an osculating circle at
any point of a conic.

Let a qh-conic be given, and a tangenttA at an arbitrary
point A of the qh-conic. Figure 8 shows the construction
of the qh-circle osculating a qh-conic at the pointA by us-
ing the elation(C, tA,D1,D

′

1) [8]. Let pointsJ1 andJ2 be
the isotropic points of the tangenttA. The tangentsd1 and
d2 from the pointsJ1 andJ2, respectively, to the given qh-
conic intersect at the pointF

′

which corresponds to the
absolute pointF. The rayF

′

F intersects the tangenttA,
which is the axis of the elation, at the centerC of the ela-
tion. Hence the tangent linesj1 and j2 (absolute lines) of
the osculating qh-circle correspond to the tangent linesd1

andd2 of a given qh-conic. Let the points of tangency of
a qh-circle andj1, j2 be denoted asD1 andD2, respec-
tively. Let the point of tangency of a qh-conic andd1, d2

be denoted asD
′

1 andD
′

2. ThereforeD
′

1, D1 andD
′

2, D2 are
the pairs of corresponding points of the elation. Similar
construction principle is given in [13].
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Remark. It should be emphasized that in a qh-plane it is
possible to construct infinitely many osculating qh-circles
at the isotropic tangency point if the given qh-conic is a
qh-circle. The qh-circle osculating the given qh-circlek at
its isotropic pointJi , (i = 1,2) can be constructed by using
the elation(F, j i ,A,A

′

), (i = 1,2). The pointF is the cen-
ter of the elation, the absolute linej i its axis,A an arbitrary
chosen point on qh-circle andA

′

an arbitrary chosen point
on the rayAF (see Fig. 9).
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4.3 Hyperosculating qh-circle of qh-conics

A hyperosculating circle of a conic has a common quadru-
ple tangent with the conic, hence it can be constructed only
at the vertices of a conic. The similar construction princi-
ple as for the osculating circle can be performed to con-
struct the hyperosculating qh-circle at the vertex of a qh-
conic.
Let the hyperbolah1 be given. The intersection pointsT1

andT2 of the qh-conich1 with its isotropic diameter are the
vertices of the hyperbola. The hyperosculating qh-circle
at the vertexT2 is completely determined with the elation
(T2, t2,Di ,D

′

i) (i = 1,2) whereT2 is the center and tangent
t2 at T2 its axis. The tangent linesj1 and j2 of the hyper-
osculating qh-circle correspond to the tangent linesd1 and
d2 of the h1. Let the point of tangency of a qh-conich1

andd1, d2 be denoted asD
′

1 andD
′

2, respectively. Let the
points of tangency of a qh-circle andj1, j2 be denoted as
D1 andD2, respectively.D

′

1, D1 andD
′

2, D2 are the pairs
of corresponding points of the elation (see Fig. 10).
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Stručni rad
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Izometrije u Escherovim radovima

SAŽETAK

U ovom članku dan je pregled izometrija ravnine i klasi-

fikacija ravninskih grupa simetrija kao matematička pod-

loga za razumijevanje ”trikova” kojima se M. C. Escher

služio prilikom stvaranja velikog broja svojih grafika. Raz-

matrat ćemo grupe simetrija na primjerima nekih od naj-

poznatijih Escherovih grafika.

Ključne riječi: Escher, izometrije, popločavanje, ravninske

grupe simetrija

1 Uvod

Simetrija kao aspekt umjetnosti cijeni se i interpretira
već stoljećima. Neki od ranijih umjetničkih radova koji
su integrirali simetriju datiraju još iz doba antičkih kul-
tura. Euklid se bavio simetrijom u desetoj knjizi svo-
jih Elemenata, gdje definira kada su neke dvije figure
simetrične. Nizozemski umjetnik-grafičar Maurits Cor-
nelis Escher (1898.-1972.) ima zadivljujući umjetnički
opus te je omiljen među matematičarima. Njegova os-
novna inspiracija potiče od arabesknih ukrasa srednjov-
jekovne palače Alhambre ǔSpanjolskoj. Impresivni opus
obuhvaća, između ostalog, i 43 grafike koje Escher jednos-
tavno naziva (npr.Escher drawing no. 8). Ta djela nastala
su u razdoblju 1936.-1942. nakon čega je Escherova pop-
ularnost poprimila svjetske razmjere. Escherove grafike su
predmet znanstvenih i stručnih radova matematičara, infor-
matičara, grafičara, a kao vrsta popločavanja ravnine zan-
imljive su i u kristalografiji ([2]). U ovom radu, koji je nas-
tao na osnovu studentskog seminara, otkrit ćemo tehniku
kreiranja nekih njegovih grafika pomoću izometrija u eu-
klidskoj ravnini. Na osnovu klasifikacije ravninskih grupa
simetrija prepoznat ćemo grupe simetrija na primjerima.
Neke Escherove grafike mogu se promatrati i u neeuklid-
skoj ravnini ([6]).

2 Definicije i svojstva izometrija

Na početku navodimo osnovne definicije i svojstva
izometrija u euklidskoj ravniniE2 ([3], [4], [5]).

Definicija 1 Izometrija euklidske ravnine je svaka bijek-
cija f : E2 → E2 ravnine na sebe kojǎcuva udaljenost
točaka, tj. takva da je d( f (A), f (B)) = d(A,B) za sve tǒcke
A i B iz E2.

Svojstva izometrija u odnosu na kompoziciju funkcija:

Teorem 1

(i) Kompozicija izometrija f i g, f◦ g, je također
izometrija.

(ii) Neka je f izometrija. Tada je njezin inverz f−1

također izometrija.

Definicija 2 Kažemo da je izometrija involutorna ako je
f ◦ f = id i f 6= id.

Involutorna izometrija je sama sebi inverz.

Definicija 3 Figura je svaki podskup od E2.

Za figuruF iz Euklidske ravnineE2 kažemo da jefiksna
figura izometrije f ako je f preslikava u nju samu, tj. ako
je f (F) = F.
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Svojstva izometrija u odnosu na fiksnu figuru:

Teorem 2 Neka je f izometrija.

(i) Sjecište, ako postoji, dvaju različitih fiksnih pravaca
od f je fiksna tǒcka od f .

(ii) Spojnica dvaju fiksnih tǒcaka od f je fiksni pravac
od f .

(iii) Ako je f involutorna izometrija, onda kroz točku
koja nije fiksna za f prolazi tǒcno jedan fiksni pravac
za f .

Definicija 4 Involutorna izometrija kojoj su sve točke
pravca a fiksne zove se osna simetrija s obzirom na pravac
a, u oznaci sa.

Escher je u svojim grafikama koristio izometrije: osnu
simetriju, translaciju, rotaciju i centralnu simetriju. Svo-
jstvo tih izometrija je da se mogu definirati pomoću osne
simetrije.

Slika 1: Primjer simetrija na Escherovoj grafici
(Angel and devil)

Definicija 5 Izometriju koja se mǒze prikazati kao kom-
pozicija sa ◦ sb dviju osnih simetrija sa i sb zovemo
translacija ako su osi simetrije a i b paralelni pravci.

Definicija 6 Izometriju koja se mǒze prikazati kao kom-
pozicija sa◦sb dviju osnih simetrija sa i sb zovemo rotacija
ako osi simetrije a i b nisu paralelni pravci.

Definicija 7 Centralna simetrija je rotacija sa ◦ sb za koju
su osi simetrije a i b okomiti pravci.

Definicija 8 Izometrija koja se mǒze prikazati u obliku
kompozicije sg ◦ sb ◦ sa, gdje je pravac g okomit na pravce
a i b zove se klizna simetrija.

Klizna simetrija je najzastupljenija u Escherovim
grafikama.

Sljedeći teorem daje karakterizaciju nekih izometrija:

Teorem 3

(i) Svaka involutorna izometrija je ili osna ili centralna
simetrija.

(ii) Kompozicija dviju rotacija je ili rotacija ili
translacija.

(iii) Izometrija je klizna simetrija ako i samo ako se može
predǒciti u obliku kompozicije jedne osne i jedne
centralne simetrije ili jedne centralne i jedne osne
simetrije.

(iv) Svaka izometrija je ili translacija ili rotacija ili kl-
izna simetrija.

Slika 2: Primjer translacije na Escherovoj grafici

Slika 3: Primjer rotacije na Escherovoj grafici

Slika 4: Primjer klizne simetrije na Escherovoj grafici
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3 Grupe simetrija

Neka je Iz(E2) skup svih izometrija Euklidske ravnine
E2. Poznato je da jeIz(E2) zajedno s komponiranjem
funkcija kao binarnom operacijom grupa izometrija, u oz-
naci(Iz(E2),◦).

Teorem 4 Neka je Iz(F) =
{

f ∈ Iz(E2) : f (F) = F
}

,
gdje je F figura Euklidske ravnine E2. Tada je(Iz(F),◦)
je grupa simetrija figure F.

Kako bi u Escherovim grafikama prepoznali izometrije
definiramo popločavanje.

Definicija 9 Poplǒcavanje je razdioba (particija) ravnine
na disjunktne skupove Hi , i ∈ N čija unija daje cijelu ravn-
inu.

• Uzorak u ravnini je figura, koja je u Escherovim
grafikama oblika životinje. Uzorak preslikavamo u samog
sebe i pomoću izometrija ravnine: rotacija, simetrija, kl-
iznih simetrija, translacija.

• Osnovni uzorakje dio uzorka sa svojstvom da skup uzo-
raka ugrupi izometrijaprekriva ravninu. Drugim riječima,
osnovnim uzorkom popločavamo ravninu.

• Generirajúce podrǔcje je dio osnovnog uzorka čije slike
u grupi simetrija uzorka popločavaju ravninu.

Na slici 5 prikazan je uzorak konja, osnovni uzorak (crveni
paralelogram) i generirajuće područje (žuti trokut).

Slika 5: Primjer generirajúceg podrǔcja

Sljedeći teorem daje klasifikaciju ravninskih grupa
simetrija ([1], [8]). Dokaz je izostavljen i može se naći
u [9].

Teorem 5 (Barlow, Fedorov, Scḧonflies-1891.)

Postoji samo17mogúcih ravninskih grupa simetrija.

Tih sedamnaest grupa poznate su i kao ravninske grupe
kristalografije. Pomoću njih, kristalografi sistematiziraju
kristale ([2]). Ravninske grupe simetrija odgovaraju
sedamnaest načina popločavanja ravnine. U Escherovim
grafikama se mogu razmatrati vrlo vješta i zanimljiva
popločavanja.

Napomena 1 Broj n oznǎcava stupanj rotacije. Rotacija
za kut360◦

n ima stupanj rotacije n.

Naziv Osnovni uzorak Stupanj
rotacije

Klizna
simetrija

Generiraju će
područje uzorka

Značajke

p1 paralelogram 1 / cijela površina translacija
p2 paralelogram 2 / 1/2 površine 4 rotacije za 180◦

pm četverokut 1 / 1/2 2 osne simetrije
pmm četverokut 2 / 1/4 2 osne simetrije
pg četverokut 1 da 1/2
pgg četverokut 2 da 1/4
pmg četverokut 2 da 1/4 osi simetrije su paralelne
cm romb 1 da 1/2
cmm romb 2 da 1/4 osi simetrije su okomite
p4 kvadrat 4 / 1/4
p4m kvadrat 4 da 1/8 centar rotacije je na osi

simetrije
p4g kvadrat 4 da 1/8 centar rotacije nije na osi

simetrije
p3 šesterokut 3 / 1/3
p3m1 šesterokut 3 da 1/6 centar rotacije je na osi

simetrije
p31m šesterokut 3 da 1/6
p6 šesterokut 6 / 1/6
p6m šesterokut 6 da 1/2

Tablica 1: Klasifikacija ravninskih grupa simetrija(preuzeto iz [7] )
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4 Primjeri Escherovih grafika

U ovom poglavlju detaljno razmatramo Escherove grafike.
Poznavajući sustav 17 ravninskih grupa simetrija, Escher
je otkrio svoj sistem ”grupirajućih pločica”. Njegove
grafike popločavanja odgovaraju pet od sedamnaest Fe-
dorovih grupa simetrija. Na sljedećim primjerima uzorci
su likovi životinja.

Na slici 6, dan je primjer ravninske grupe simetrijap1
i detaljan prikaz svojstava ravninske grupe simetrijap1.
Uzorak grafike je patka. Osnovni uzorak je paralelogram
označen crvenom bojom. Generirajuće područje je ekviva-
lentno osnovnom uzorku. Osnovni uzorak se translatira u
smjeru okomitom na stranice paralelograma. Dakle, radi se
o translacijama paralelograma koje čine grupu s obzirom
na kompoziciju. Kod detaljnog prikaza osnovni uzorak i
generirajuće područje su paralelogram pomoću kojeg se
generira (popločava ravnina) motiv oblika slovaL.

Slika 6: Escher drawing no. 128 i vizualna
reprezentacija p1 grupe simetrija

Slika 7 predstavlja grupu simetrijap2. Osnovni uzorak je
paralelogram označen crvenom bojom.Žutom bojom je
istaknuto generirajuće područje osnovnog uzorka. Gener-
irajuće područje se transformira rotacijom za 180◦ i zatim
translatira u smjeru rubova osnovnog uzorka. Detaljnija
reprezentacija dana je na istoj slici gdje je generiran mo-
tiv oblika slovaL. Znak elipse označava rotaciju generi-
rajućeg područja (u ovom slučaju radi se o1

2 površine os-
novnog uzorka). Stupanj rotacije je 2, tj. rotacija za 180◦.

Slika 7: Escher drawing no.8 i vizualna reprezentacija
p2 grupe simetrija

Na slici 8 je Escherova grafikaEscher drawing no.109 s
istaknutim osnovnim uzorkom crvene boje. Generirajuće
područje uzorka je označeno žutom bojom. Vertikalno se
translatira za1

2 duljine kraće stranice te se transformira kl-
iznom simetrijom na lijevu i desnu stranu. Kod ravninske
grupe simetrijapg generirajuće područje je12 površine os-
novnog uzorka.

Slika 8: Escher drawing no. 109 i vizualna
reprezentacija pg grupe simetrija
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Slika 9 daje uvid u grupu simetrijapgg. Znak elipse
označava rotaciju generirajućeg područja uzorka za 180◦.
Generirajuće područje je istaknuto crvenom bojom. Grupa
pggsadrži izometrije: rotaciju i kliznu simetriju. Generi-
rajuće područje se rotira za 180◦ i zatim transformira ver-
tikalno, kliznom simetrijom. Ova metoda slijedi iz Defini-
cije 6, Definicije 8 i svojstva izometrija.

Slika 9: Vizualna reprezentacija pgg grupe simetrija

Slika 10 predstavlja grupup4. Uzorak grafike je gušter.
Crvenom bojom je označen osnovni uzorak, a žutom
bojom generirajuće područje uzorka. Ravninska grupa
simetrija p4 sadrži izometrije: rotaciju i translaciju. Na
detaljnijoj reprezentaciji prikazan je manji četverokut koji
(uz istaknuto generirajuće područje) označava rotaciju za
90◦. Generirajuće područje se transformira rotacijom, tri

puta, u smjeru kazaljke na satu. Zatim se translatira, ver-
tikalno i horizontalno, za duljinu stranice osnovnog uzorka
(kvadrat). Radi lakšeg razumijevanja ravninske grupe
simetrijap4 koristi se i alternativni naziv, ”grupa simetrija
s obzirom na translaciju”.

Slika 10: Escher drawing no.15 i vizualna reprezentacija
p4 grupe simetrija
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ACCOUNT NAME: Hrvatsko društvo za geometriju i grafiku
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PO PRIHVA ĆANJU RADA . Tekst prihvaćenog rada autor dostavlja elektronskom poštom kao LaTeX datoteku, a slike u
EPS ili PS formatu (s nazivima koji odgovaraju rednom broju slike u tekstu članka) na adresu:
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