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Stitching B-Spline Curves Symbolically

Stitching B-spline Curves Symbolically
ABSTRACT

We present an algorithm for stitching B-spline curves,
which is different from the generally used least square
method. Our aim is to find a symbolic solution for unifying
the control polygons of arcs separately described as 4th de-
gree B-spline curves. We show the effect of interpolation
conditions and fairing functions as well.

Key words: B-spline curve, B-spline surface, merging,
interpolation, fairing

MSC2010: 65D17, 65D05, 65D07, 68U05, 68U07

Simboli¢ko spajanje B-splajn krivulja
SAZETAK

Predstavljamo algoritam za spajanje B-splajn krivulja, koji
se razlikuje od opcenito upotrebljavane metode najma-
njih kvadrata. Nas$ cilj je naci simboli¢cko rjeSenje za
ujedinjavanje kontrolnih poligona lukova koji se svaki za-
sebno opisuju kao B-splajn krivulje 4. stupnja. Takoder
pokazujemo utjecaj uvjeta interpolacije i postizanja glatkih
funkcija.

Kljuéne rijeci: B-splajn krivulja, B-splajn ploha, integri-
ranje, interpolacija, postizanje glatkoce

1 Introduction properties of curves and surfaces is a standard technique.
In [7], [8] and [9] constructions of B-spline surfaces with
Stitching or merging B-spline curves is a frequently used poundary conditions are presented using fairing functions
technique in geometric modeling, and is usually imple- Finally, merging of B-spline surface patches are shown ap-

mented in CAD-systems. These algorithms are basically plying the developed curve stitching method for their pa-
numerical interpolations using the least squares method gmeter curves.

The problem, how to replace two or more curves which
are generated separately and defined as B-spline curve
has well functioning numerical solutions, therefore, rela

tively few papers have been published about this topic. In
[6] and [3] methods for approximate merging of B-spline

curves and surfaces are given. In [4] one of the symbolical
algorithms is described, which extends B-spline curves by
adding more interpolation points one by one at the end of
the curve. In [5] the construction of a covering surface is

2 Symbolical solution for stitching two
B-spline curve segments

In our symbolical solution for stitching two given curves
we assume that they are represented by B-spline segments
of degree 4 with uniform periodic knot vectors. The one-
parameter vector function of such a curve is

shown for unifying more B-spline surfaces. Po

We approach the stitching problem from a geometrical P1

point of view, and represent a symbolical solution to com- rt)=(t* t 2 t 1)-M-|p2|,0<t<1,
pute the control points of the new curve from the control p3

points of the two given curve segments and appropriate in- P4
terpolation conditions. This symbolical solution is s&gbl

) . where

it can be used generally for any two given curves. The er-

ror of the interpolation depends on the curvatures of the in- 1 -4 6 -4 1
put curves. Larger difference in their curvatures raises th 1 -4 12 -12 4 O
error. In order to reduce the error, two of the new control M = 24 6 -6 -6 6 O0f.
points are adjusted by fairing conditions using the comcret -4 -12 12 4 O
numerical data. This computation requires minimization 1 11 1 1

of quadratic functions leading to solve linear equations. |
this way we avoid non-linear optimization problems. Ap-
plying fairing functions for modifying the shape and the

x Supported by a joint project between the TU Berlin and the BUT
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The interpolation conditions are 5 points + 3 tangent vec-

Ps tors (Fig. 2).
P Ps
p - 01(0) =r1(0), 42(0) =r1(0.5), d2(1) =r1(1),
Py P4 d3(1) =r2(0.5), ga(1) =r2(1)
ps pe ) 041(0) =11(0), 92(1) = F1(1), Ga(1) =F2(1)
&2 These 8 equations are linear in the unknown control points

of the new B-spline curve. The solution of the system re-
sults in the required control points, (j =0,...,7) ex-
ment pressed as linear combinations of the given control points

We recall the symbolical solution of the interpolation prob P> pzi., (i=0,....4).
lem ([10]), where the input data are the interpolation point Especially,
ps, pm, pe, and the derivatives at the endpoitgsaandte

Figure 1: Input data and control points of one curve seg-

(Fig. 1). The output is the 5 control poings, i =0,...,4 bo= 1.0708%10+20166n; ~ 42309, +3.769413+1.4061s
computed from the conditions —0.009(30 — 06500051 — 1.8236,2 — 0.54160,3 — 0.009(p24
by = —0.0152%10+ 0.594%011 + 1.008F1, — 0.963&13 — 0.323014
r(0) =ps,r(0.5 =pm,r(l) =pe r(0)=ts, (1) =te. +0.00220 -+ 0.1500p1 + 0.42085 + 0.12503 -+ 0.00204
The control points are expressed by the input data as the bz= 0.009010+0.205911 +0.293(12 +0.744415+0.214914
solution of this system of linear equations. ~0.001320 —0.100(pz1 — 0.280%3 — 0.083325 — 0.001P24
Po _30.1667be— 46.1667s+ 77.3333m + 6.33333¢ — 16.3333s b= —0002(s0+0.183311 +0.915212 — 0.355515 — 0.207614
p1 7.8333%e+ 11.833%s— 18.6667pm — 1.66667e + 2.66661s +0.0013050 + 0.100(;; + 0.2805022 + 0.0833023 + 0.001324
|- | ol sisesiosastn 1o 15| b om0z 008 LG 0308
Dy _46.166be— 30.1667s+ 77.3333m + 16,3333e — 6.33333s —0.002pz0 — 0.150Q021 — 0.420822 — 0.125(25 — 0.0020024
In order to demonstrate the behaviour of this symbolic in-  Ps=  ~0001P10+0.1222,, = 0.1861p,, ~1.630%;; ~ 033754
terpolation method we approximated a circular aft) +0.009G0z0 +0.6500z + 1.8236z, + 054183 +0.009024
be=  0.002Qyo—0.18331; +0.306%;2 +2.4944015 +0.5131py4

with central angle< 11/3 interpolated by the curve(t). —0.0152720 — 0.850021 1,336z + 0083323 — 0.0152rzs
The numerical error measured ;@(c(t) —r(t))2dtis less by=  —0.009(10+0.7944p1, — 1.4041p;, — 10.938 15 — 2.242P1s
than 1028, i.e approximately zero. +0.070820 + 3.35001 + 6.058322 + 4. 250023 + 1.070824
We use this experience for stitching two joining B-spline
curve segments. In that algorithm we will use also similar

interpolation data and B-spline functions of degree 4. The range of magnitudes of the coefficients show that the
solution is stable. The corresponding vector equation of

the unified B-spline curve is

B P P
12 13 21 Daz

bitj-1
bij
gt)=(* t t2 t 1)-M-[bij1].0<t<1,

Diyji2

Diyjs3
wherei =1,...,4 (4 segments); =0,...,4 (each with 5
control points).
The examples show that the interpolation error depends
on the variation of the curvatures of the given input
curves. This error is measured by the integrated sum of
the quadratic difference between the corresponding points
of the given and the computed new curves, while each seg-
We assume that the two input segments are given bymentis parametrized on tf@ 1] interval. Thatis, the error
B-spline functions, one biy (t) with control pointg,; and

Figure 2: Merging two curves into 4 B-spline segments

1
the other byr,(t) with control pointspy;, (j =0,...,4). error— z / (Fik(t) — qj(t))zdt,
We generate the resulting B-spline curve with 4 segments all sigments” 0

gi(t), 0<t <1, (i=1,...,4) determined by 8 control

pointsbj, (j =0,...,7). (i=1,2k=12j=1...4).

4
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Fig. 2 shows the segmentation of the curves, where each of
the given curves; (t) andr;(t) is divided into two parts.

In Fig. 3 the result of stitching two circular arcs of equal
curvatures is shown with the computed control points.
The interpolation points are marked by circles. The new
B-spline curve interpolates the given arcs practicallyhwit
zero (1072%) error. If the curvatures of the two arcs are
different, the error is larger (Fig. 4 and Fig. 5, the
given curves are drawn lighter, the interpolation points ar
marked with circles, the interpolation derivatives are not
shown). Moreover, the resulting curve shows a wavy shape
due to the low number of interpolation conditions.

The interpolation error can be reduced by prescribing more
interpolation conditions. The shape of the curve can be im-
proved by fairing (smoothing) conditions.

20
15

1.0

0.5

2.0
15
1.0

0.5

N
D¢

0.5 1.0 15

Figure 5: Merged curves with more different curvatures,

error= 0,026

3 The effect of fairing conditions

The solution, where 8 control points are determined from
2 x 5 given control points, result in a uniquely determined
B-spline curve with 4 segments. In order to apply fairing
conditions free control points are necessary. Therefbee, t
prescribed 8 interpolation conditions have to be relaxed. |
our investigation we have deleted two interpolation points
(the midpoints of the input curves), and have chosen two
variable control pointgs andb, for modifying the shape

of the resulting curve. In this case 3 points and 3 deriva-

—os| tives are prescribed,

Figure 3: Merged circular arcs, error ~ 0

41(0) =11(0), 92(1) = 1(1), g2(1) = 2(1)

2.0

151

1.0

0.51

L
0.5 1.0 15 2.0

Figure 4: Merged curves with different curvatures,
error=0,0066

We consider the same integrated sum of the quadratic dif-
ferences between the given and required B-spline curve
segments, which measures the interpolation error, but now
it contains two free control points, and is considered as tar
get function to be minimized.

1
Flbaba) = 5 [ (rult)—a;t)2et,

all segments 0

(i=12k=12j=1...4).

This function is quadratic in the variables. Therefore, the
minimization leads to a system of linear equations. The
minimal value measures the interpolation error.
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/ 4 Improving the solution

More interpolation conditions lead to more control points,
therefore, the resulting curve will consist of more curve
segments. After several experiments our solution will have
8 curve segments with 12 new control points (Fig. 8). Ac-
1o} cordingly, the input curves have to be segmented each into
4 parts.

——

L L L
05 1.0 15

~N
o

Figure 6: Theerror= 0,024

Though the error has been reduced, but the shape i
wavy. In order to get smoother curve, we add to the
get function two additional terms. One is for minimiz
the difference of the derivatives between the given an Figure 8: Segmentation of the merged curve
quired curves, the other for minimizing the variation of
second derivative of the middle curve segmepid) and
gs(t), where the curvatures of the given curves show larger
difference.

The extended target function is

First, all the 12 new control points are computed from 12
interpolation conditions, which are 7 interpolation psint
and 5 tangent vectors. The interpolation points are points
of the input curves corresponding to the starting point of
the curve segmenf; (t) and to the end points of the 1., 2.,
4., 6., 7., 8. curve segments (Fig. 8). The first derivatives

1. —qa:(1))2
Y all segments[Jo (Mik(t) — (1))~ dt are prescribed at the two end points, at the midpoints and
+0,2- [3(Fik(t) — q;j(t))? dt at the joining point of the given curves. These conditions
0.1-53 . (L& ()24t expressed with the B-spline vector functions are linear in
5 ijzfo a4 the unknown control pointls;, i = 0,...,11. The solution

The minimization of this target function results in a is expressed by linear combinations of the given control
pointspyj andpyj, j =0,...,4. This symbolical solution

smoother curve and larger error. The coefficients 0,2 and. -
0,1 are chosen by experiments. If the weight of the third is shown in Fig. 9. The error has been succesfully reduced

term is larger, the upper bump in the new merged c:urve]crom 0,026 10 0,0035.
disappears and the error is growing (Fig. 7). It is obvious

that smoothing requires more interpolation conditions. vl

2.0r
151
151
1.0
1.0f-

0.5+

0.5

L L L ~ 05 1.0 15 2.0
0.5 1.0 15 2.0

) o Figure 9: Merged curve computed by the symbolical solu-
Figure 7: After fairing the error= 0,048 tion. The error= 0,0035
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If the given curves do not join, but there is a gap between The shape of the solution can be improved by applying
them, the interpolation point is the midpoint between the fairing conditions. Our investigations have shown that two
two end points of the given curves and similarly, the inter- variable control points provide satisfactory solutiongy. F

polation tangent vector at this point is the middle value of 11 shows the control polygon of the merged B-spline curve
the two end tangents. In this way a B-spline curve can bewith 10 precomputed and 2 free control points. The inter-
determined which replaces parts of the two given curves polation conditions are now 7 points and 3 tangent vectors,

and connect them smoothly (Fig. 10).

2.0

15

1.0

T S S E S S Y
0.5 1.0 15 2.0

Figure 10: Sitching two curves with a gap

/

2.0
1.5
1.0

0.5

-0.51 !

Figure 11: The control polygon with two variable control
points

and the fairing condition is given by the same target func-
tion as in Section 2, but with 8 curve segments. The solu-
tion of minimization results in a slightly smoother curve.
The interpolation error slightly increased in this caserfro
0,0035 to 0,004. The picture of the curve looks like in Fig.
9, the difference is not visible.

The symbolical solution (without fairing) leads to
smoother curve and smaller error, if the variation of the
curvatures of the given curve is smaller. On the base of
this experience we have applied it for stitching B-spline
patches.

5 Stitching two B-spline patches

We assume that the surface patches are represented by two-
parameter vector functions of44 degree with periodical
uniform knot vectors. The matrix form is

r(uv) =W vul)-M-B-MT- (VV3V2v1)T,

(u,v) €[0,1] x [0,1]

and
1 -4 6 -4 1
-4 12 -12 4 O

M:2—14 6 -6 -6 6 O0f.
-4 -12 12 4 O
1 11 11 1

The geometric data are the points of the control net denoted
by
,...4, j=0,...4

In the computation of merging two given B-spline patches
we apply the symbolical solution shown for merging two
B-spline curve segments. Each given control net consists
of 5 x 5 control points. The new control net 06512 con-

trol points are computed row by row by the same scheme
applied for curves. The resulting surface has8 patches
joining with third order continuity, if there are no multel
control points and knot values.

In Fig. 12 two B-spline surface patches are shown defined
separately. In Fig. 13 the merged surface is shown. The
interpolation error has been computed by numerical inte-
gration of the squared differences between the points of
the given and the resulting surfaces at the same parameter
values. This estimated error is 0,0032.
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Lamoenian Circles of the Collinear Arbelos
ABSTRACT

We give an infinite sets of circles which generate
Archimedean circles of a collinear arbelos.

Key words: arbelos, collinear arbelos, radical circle, Lam-
oenian circle

MSC2010: 51M04, 51M15, 51N20

1 Introduction

For a pointO on the segmemB, leta, B andy be circles

with diametersAO, BO and AB respectively. Each of the

Lamoenove kruznice kolinearnog arbelosa
SAZETAK

Pokazujemo beskonaéne skupove kruZnica koje generiraju
Arhimedove kruznice kolinearnog arbelosa.

Kljuéne rijeti: arbelos, kolinearni arbelos, potencijalna
kruZnica, Lamoenova kruZnica

generated circles are Archimedean, we Jagenerates
Archimedean circles wit®. Frank Power seems to be the
earliest discoverer of this kind Archimedean circles: The
farthest points o and from AB generate Archimedean

areas surrounded by the three circles is called an arbelos¢ircles withy [6].

The radical axis of the circles andp divides each of the
arbeloi into two curvilinear triangles with congruent inci

Let | be one of the points of intersection pand the rad-
ical axis ofa andp. Floor van Lamoen has found that the

cles (see the lower part of Figure 1). Circles congruent to endpoints of the diameter of the circle with diameitér

those circles are said to be Archimedean.

I

Figure 1:A circle generating Archimedean circleswith y

For a pointT and a circled, if two congruent circles of
radiusr touching afl also touchd at points different from
T, we sayT generates circles of radiuswith 8, and the
two circles are said to be generated Dywith . If the

perpendicular to the line joining the centers of this circle
andy generate Archimedean circles wifti2] (see the up-
per part of Figure 1). We say a cirafegenerates circles of
radiusr with §, if the endpoints of a diameter gfgenerate
circles of radiug with 6. Circles generating Archimedean
circles withy are said to be Lamoenian. In this article we
consider those circles in a general way.

2 Thecollinear arbelos

In this section we consider a generalized arbelos. For two
pointsP andQ in the plane(PQ) andP(Q) denote the cir-

cle with diametelPQ and the circle with centdP passing
throughQ respectively. For a circld, Oy denotes its cen-
ter. For two point® andQ on the lineAB, leta = (AP),

B = (BQ) andy = (AB). Let O be the point of intersec-
tion of AB and the radical axis of the circlesandf3 and
letu=|AB|, s= |AQ|/2 andt = |BP|/2. Unless otherwise
stated, we use a rectangular coordinate system with origin
O such that the point8, B andP have coordinate&, 0),
(b,0) and(p, 0) respectively witha — b = u. The configu-
ration(a, B,y) is called a collinear arbelos if the four points

9
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lie in the order (i)B, Q, P, Aor (ii) B, P, Q, A, or (iii)) P, B,

A, Q. In each of the cases the configurations are explicitly
denoted byBQPA), (BPQA) and(PBAQ) respectively. In
the casé® =Q =0, (a,B,y) gives an ordinary arbelos, and
(a,B,y) is called a tangent arbelos. Archimedean circles of

the ordinary arbelos are generalized to the collinear arbe-

los (a,B,y) as circles of radiust /(s+t), which we denote
byra [3]. Circles of radiug a are also called Archimedean
circles of(a,B,y). The radius is also expressed by

_|AOlIBP _alp-b)
A 2u 2u

(1)

3 Lamoenian circles of the collinear arbelos

A circle generating circles of radiug with yis also said
to be Lamoenian for the collinear arbel@s (3,y). In this
section we give a condition that a circle is Lamoenian. For
a circled of radiusr and a poinfT, let us define
[r?—|TO5|?|
rTo)=————

(T.3) T
which equals the radius of the generated circled lwith
0 by the Pythagorean theorem.

Theorem 1 Let & be a circle of radiusr and let J, H be
pointswith J lying on &. The circle (HJ) generates circles
of radiusswith & if and only if

|HO3|? = r(r + 4s). (2)

In this event, the following statements are true.

(i) If a points K lies on the circle Og(H), the circle (KJ)
generates circles of radius swith d.

(ii) The point Oy lies on the circle of radius r /2 with
center Ono,)-

Proof. Let h = |HOs/| (see Figure 2). We use a rectangu-
lar coordinate system with origi®s such that the coordi-
nates ofH is (h,0) in this proof. Let(f,g) be the coordi-
nates of the poin®;), and letT be one of the endpoints
of the diameter ofHJ) perpendicular t@sO 3. Then
O(Hy) I =k(—g,f) and(ﬁ = (f —kg,g+kf) for a real
numberk. From|O T| = [Opg)H|, (—kg)?+ (kf)2 =

(f —h)2 4 @2, which implies

(f—h?+¢?

2 _
K= f2+g?

3)
The circle(HJ) generates circles of radisswith o if and
only if

2= ((f —kg)?+ (g+kf)?)|
2r

r(T,0) = =s

10

Since (3) holds, the last equation is equivalent to

1, h 5, 1
Zrh +<f—§> +9 —Er(riZS),

where the plus (resp. minus) sigh should be taken vilhen
lies outside (resp. inside) &f If (v,w) are the coordinates
of the pointJ, (v+h)/2= f andw/2 = g. Therefore the
last equation is equivalent to

1, 1, 1
Zh +Zr = 2r(rj:2$),

which is also equivalent to (2). The part (i) obviously
holds. The center ofHJ) is the image of] by the dila-
tion with centerH and scale factor /2. This proves (ii).
O

Figure 2

Let € be the circle with cente®, belonging to the pen-
cil of circles determined byt and 3 for the collinear ar-
belos (a,B,y). We call € the radical circle of(a,f,y).
The circle is considered in [4] and [5] fdiBQPA) and
(BPQA). If a and have a point in commorg passes
through the point. Fo(BQPA) letV be the point of tan-
gency of one of the tangents affrom O (see Figure 3).
Then|OV|? = ap. If |00,|? > ap, a tangent fron®y to the
circleO(V) can be drawn. Theapasses through the point
of tangency. If00y|2 = ap, € is the point circledy, which
coincides with one of the limiting points of the pencil. If
|00,|? < |ap|, € does not exist. Let be the radius of.
For (BQPA), € = |00y|? — ap by the Pythagorean theo-
rem. For(BPQA) and (PBAQ), & = |00,|? + |ap| (see
Figure 4). In any case

& = |00y|? —ap. 4)

P

00 P

B

Figure 3:The case |0,0]2 > |ap| for (BQPA)

Oy A
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P B 0,0 A 0

Figure 4:(PBAQ)

Theorem 2 For a collinear arbelos (a, 8,y) with radical
circleg, if pointsJ and H lie on y and € respectively, then
thecircle (HJ) is Lamoenian.

Proof. For (BPQA) and (BQPA), ra = a(p—b)/(2u) by
(). Therefore by (4),

u,/u _ (a—b)? _ (a+b)? B
§(§—4rA)_T—a(p—b)_ 2 —ap=~¢€.
Similarly for (PBAQ), we get

u/u

> (é +4I‘A) — e
Hence the theorem is proved by Theorem 1. O

4 Quartet of circles

In this section we show that a Lamoenian circle given by

Theorem 2 is a member of a set of four Lamoenian circles.

All the suffixes are reduced modulo 4 in this section. Let
Jo be a point on a circlé, and letH be a point which does
not lie ond (see Figures 5, 6). L&yR; be the diameter of
the circle(HJp) perpendicular to the lin®;0 14, and let
Rp andR; generate circles of radisswith 8. LetJ; be the
point of intersection of the lingyR; andd, and letR; be
the point such thatR1J1 R, is a rectangle. Then the circle
(HJ;) also generates circles of radsiwith 6 by Theorem
1. While Ry generates circles of radigsvith 6. Therefore
R> also generates circles of radigsvith . Similarly we
construct the pointg andJs ond and the point®; andR,
such thatl, andJs lie on the linesJ;R, andJ;R3 respec-
tively andHR,JR3 andHR3J3R, are rectangles. TheRs
generates circles of radigswith & andR,4 coincides with
Ro. Now we get the pointg; on d andR; (i =0,1,2,3)
such thaR R 1 is the diameter ofHJ;), R generates cir-
cles of radius with &, JopJ1J2J3 is a rectangleR lies on the
line JJ_1. The four circlegHJ) (i =0,1,2,3) are called
a quartet od, andH andJyJi1J2J3 are called the base point
and the rectangle of the quartet respectively.

Figure 6:H lies outside of &

By the definition ofR;, Ry, Re, H are collinear, alsdr;,

Rs, H are collinear, and the two lines are perpendicular.
Letli = [HR|. Then|HJo|?+ |HL[2 =12 +12+12+12 =
IHJ|2 4 |HJ|2. Therefore|HJo|? 4 [H)? = [HI|? +
|HJs|2 holds.

Figure 7:A quartet of Lamoenian circles on € for (PBAQ)

11
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Ro

For a collinear arbelo&, 3,y) with radical circleg, if the
two pointsH and Jy lie on € andy respectively, we can )
construct a quartgtHJ;) (i = 0,1,2,3) ony consisting of R,y J1 Jo
Lamoenian circles by Theorem 2. Alsohf and Jy lie
ony ande respectively, we can construct a quair(et;)
(i=0,1,2,3) on € consisting of Lamoenian circles (see

Figure 7).

Jo J3 R3
Theorem 3 For aquartet (HJ) (i=0,1,2,3) onacircle R3
0, the rectangle is a square if and only if (HJ;) touches Figure 9

o6 for somei. In this event, (HJ;2) also touches 6, and

(HJi-1) and (HJ11) are congruent and intersect at Oj. _
5 Special cases

Proof: If (HJp) touchesd, RyJoRy is an isosceles right tri-  We conclude this article by considering the tangent arbelos
angle, sincéOsRo| = |OsRy|. This implies thatlzJoJ; is (a,B,y) with O = P = Q. Sincee = O,(0), Power’s result
also an isosceles right triangle, i.doJiJoJs is a square. mentioned in the introduction is restated as botAnd 3

. are Lamoenian. Figure 10 shows a quarteyaevith base
Conversely let us assumiglloJs is a square. We as- pointO with Jy = A, in whicha andp are members of the
sume that(HJ;) does not touctd for i = 0,1,2.3. The i aret. Figure 11 shows a quartetowith base poinA
sides or the extended sides of the square and the circlgyjth J, = O. In this figurea and the reflected image @f

Os5(Ro) intersect at eight points, four of which aRg, Ry, in Oy are members of the quartet. In each of the cases, the
Ro, Rs. If |JRi| = |JRi41], (HJ) touchesd. Therefore  rectangle is a square.

|JiRi| # |JRi+a| for i =0,1,2,3. This can happen only
when Ry, Ry, Rs, Ry lie inside of o (see Figures 8 and
9). Hence|JoRo| = |J1R1| = |J2R2| = |J3R3| 75 |JOR1| =
|J1R2| = |Rs| = |JsRo|. Therefore the four rectangles
HRJR11 (i=0,1,2, 3) are congruent. Then they must be
squares, sinckl is their common vertex. But this implies
|JiRi| = |[JRi11], a contradiction. HencéHJ,) touchesd
for somei. ThenH lies onJJi;2. ThereforeHJ12) also
touchesd. While J_1J;11 andHOg are perpendicular and
intersect alOs. Therefore(HJ_1) and (HJi;1) are con-

gruent and pass throu@Dy. O
J1 Jo
R
Ro
8
Ry
R3
Ja J3
Figure 8 Figure 11:A quartet on € with base point A

12
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Let £ be the radical axis af and. Quang Tuan Bui has the same side of asA. Figure 12 shows a quartet gn
found that the points of intersection of the circlg®Og) ~ With base poinO with Jo = K. In this figureRo andR,
and(BOy) lie on £ and generate Archimedean circles with lie on AB while R; lies on L. Figure 13 shows a quartet

on € with base poinK with Jyp = O. In this figure,R1Jo
yfor the tangent arbelos:, B,y) [1]. Let Ry be one of the touchess at O. Thereforeld; = Jo = O, i.e., the rectangle

points of intersection, and let the line parallelAB pass-  degenerates into a segment, and the quartet consists of two
ing throughR; intersecty at a pointK, whereK lies on different Lamoenian circles.

- T~ |
Ji ‘1 L \Jo = K TRy TR
_ | ( ) 7 /|
™~ AV e LR
R \R :‘///OB \ B J()=JéB \
NN B
/ \ € ) /
Y, 7\‘\,,,, J3=J2 €
B _\ y B Ro 5/R2
J2 i 3
| 3
: W
Figure 12:A quartet on y with base point O Figure 13:A quartet on € with base point K
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The Parabola in Universal Hyperbolic Geometry |
ABSTRACT

We introduce a novel definition of a parabola into the
framework of universal hyperbolic geometry, show many
analogs with the Euclidean theory, and also some remark-
able new features. The main technique is to establish
parabolic standard coordinates in which the parabola has
the form xz=y2. Highlights include the discovery of the
twin parabola and the connection with sydpoints, many
unexpected concurrences and collinearities, a construction
for the evolute, and the determination of (up to) four
points on the parabola whose normals meet.

Key words: universal hyperbolic geometry, parabola

MSC2010: 51M10, 14N99, 51E99

Parabola u univerzalnoj hiperbolitkoj geometriji |
SAZETAK

Uvodimo novu definiciju parabole u okvir univerzalne
hiperboli¢ke geometrije, pokazujemo mnoge analogone s
euklidskom geometrijom, ali i neka izvanredna nova svoj-
stva. Osnovna je tehnika uspostavljanje paraboli¢nih stan-
dardnih koordinata u kojima parabola ima jednadzbu ob-
lika xz=y2. Istitemo otkri¢e parabole blizanke, vezu sa
sidto¢kama, mnoge neolekivane konkurentnosti i koline-
arnosti, konstrukciju evolute te odredivanje (do najvise)
Cetiriju tolaka parabole u kojima normale parabole pro-
laze jednom to&kom.

Kljuéne rije€i: univerzalna hiperboli¢ka geometrija,
parabola

1 Introduction Of course the ancient Greeks also studied the familiar met-
rical formulation of a parabola: it is the locus of a point
This paper begins the study of tiparabolain univer- which remains equidistant from a fixed poknt called the

sal hyperbolic geometry (UHGYhe framework is that of ~ focus and a fixed linef, called thedirectrix. (We have a
[16], [17], [18], [19] and [20]; a completely algebraic and good reason for using the same letters for both concepts,
more general formulation of hyperbolic geometry which with only case separating them). Such a cahicas a line
extends to general fields (not of characteristic two), and of symmetry: theaxis athroughF perpendicular tof. It

also unifies elliptic and hyperbolic geometries. We will see also has a distinguished poivitcalled thevertex which

that this investigation opens up many new phenomenon,is the only point of the parabola lying on the azisaside
and hints again at the inexhaustible beauty of conic sec-from the point at infinity. The verteX is the midpoint
tions! between the focuB and thebase pointB = af.

In Euclidean geometry, the parabola plays several distin-For such a classical parabofa hundreds of facts are
guished roles. 1t is the graph resulting from a quadratic known, see [1], [4], [5], [8], [10], [13], [14]; quite a few
function f (x) = a+ bx+cxX?, and so familiar as the sec- of them going back to Archimedes and Apollonius, others
ond degree Taylor expansion of a general function. The added in more recent centuries. Of particular importance
parabola is also a conic section in the spirit of Apollonius, are theorems that relate to an arbitrary p&ian the conic
obtained by slicing a cone with a plane which is parallel and its tangent ling. In particular the construction qi

to one of the generators of the cone. In affine geometryitself is important: there are two common ways of doing
the parabola is the distinguished conic which is tangent to this. One is to take the fodt of the altitude fronP to the

the line at infinity. In everyday life, the parabola occurs directrix f, and conned® to the midpoinM of TF; so that

in reflecting mirrors and automobile head lamps, in satel- p = PM. Another is to take the perpendicular lineo PF

lite dishes and radio telescopes, and in the trajectories ofthroughF, and find its mee§with the directrix; this gives
comets. p =PS The pointSis equidistant fronT andF, and the

14
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circle § with centerSthroughF is tangent to both the lines  has the convenient equatiom = y?. This allows a sim-

PF andPT. ple parametrization for the curve, as well as pleasant ex-
A related and useful fact is that a choRN is a focal plicit formulas for many interesting points, lines, conics
chord—meaning that it passes throlgh-precisely when  and higher degree curves associated to it.

the meet of the two tangentsRtandN lies on the direc-  In our study of the basic points and lines associated with
trix f, and in this case the two tangents are perpendicu-the parabola, concrete and explicit formulae are key ob-
lar. These facts are illustrated in Figure 1. Another result, jectives, because they allow us a firm foundation for deeper
which figures often in calculus, is thatffandQ are arbi- investigations. The main thrust of the paper is then to show
trary points on the parabola with the meet of their tan-  how the hyperbolic parabola shares many similarities with
gentsp andg, andT,U andW are the feet of the altitudes the Euclidean parabola. The highlights include the duality
from P,Q andZ to the directrix, theW is the midpoint of leading to the twin parabola, a straightedge construction
TU of the evolute of the parabola, and a conic construction of
four points on the parabola whose normals pass through a
fixed point (in the Euclidean case there are at most three
points with this property).

This paper is the first of a series on the hyperbolic parabola.
In future papers we will show that there are many new and
completely unexpected aspects of the hyperbolic parabola;
itis a very rich topic indeed.

1.1 A brief review of universal hyperbolic geometry

We work over a fixed field, not of characteristic two, and
give a formulation of universal hyperbolic geometry valid
with a general symmetric bilinear form—this generality
will be important for us when we introduce parabolic stan-
Figure 1: The Euclidean Parabola dard coordinates. This is only a quick introduction; the

So when we investigate hyperbolic geometry, some naturaleader may consult [17], [18], [19], [20] for more details.
guestions are: what is the analog of a parabola in this con-A (Projective) point is a proportiora= [x:y: 7] in square
text, what properties of the Euclidean case carry over in Prackets, or equivalently a projective row vectar=

this setting, and what additional properties might the hy- [X ¥ 2 (unchanged if multiplied by a non-zero num-
perbolic parabola have that do not hold in the Euclidean Per). A (projective) line is a proportiorL = (I :m: n) in
case? These issues have been studied by several author9inted brackets, or equivalently a projective column vec-
such as [2], [15], [9]. tor

In this paper we answer these questions in a new and more I

general way, using the wider framework of UHG, and | _ [ml| .

allowing the beginnings of a much deeper investigation. n

There is a very natural analog of a parabola in this hyper-

bolic setting, and many, but certainly not all, properties of Theincidencebetween the poird = [x:y: Z and the line
the Euclidean parabola hold or have reasonable analogs fok = (I : m: n) is given by the relatioaL = Ix+my+nz=

it. But there are many interesting aspects which have noO. Thejoin of points is defined by

Euclidean counterpart, such as the existence of a dual or P Lo
twin parabola, and an intimate connection with the theory 2132 = Xacyria]x[xeoy2 2]

of sydpoints, as laid out in [20]. = (Y12o — Yozu 1 ZaXo — ZoX1  XaY2 — XoY1) 1)
The outline of the paper is as follows. We first give a
very brief review of universal hyperbolic geometry, where
the algebraic notions afuadranceandspreadreplace the
more traditional transcendental measurementisitnce  Lil, = (I3 :myg:ng) x (I :mp i np)

andangle We then define the parabola in the hyperbolic _ _ . _ . _

setting (we often refer simply to tHeyperbolic parabol = [Maftz — Mgy : Mgl =l lame — oy . @
give a dynamic geometry package construction for it, in- Collinearity of three pointss,az,az will here be repre-
troduce some basic points associated to it, and use some afented by the abbreviatidifeyaraz]], and similarly the
these and the Fundamental theorem of Projective Geome€oncurrency of three lineky, Lo, L3 will be abbreviated
try to definestandard coordinatesn which the parabola  [[L1L,L3]]. These are determinantal conditions.

while themeetLiL, of linesL1 = (I3 : my : ng) andlLy =
(2 : mp : ny) is similarly defined by

15
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The metrical structure is given by a (hon-degenerated3 Ly as

projective symmetric matrixC and its adjugat® (where T2
. i . . (a1Cal)
bold signifies a projective matrix- determined only upto a q(aj,a) =1— = = and
non-zero multiple). The points anda, areperpendicu- (auCay) (a2Caj)
lar precisely whera;CaJ = 0, writtenay L ap, while lines (LT DL2)2

L, andL, areperpendicular precisely wherL] DL, = 0, S(Ly,Lz) =1~ (5)

writtenL; | Ly. The pointa and the linelL aredual pre- (LIDLl) (L;DLZ)

cisely wherL =a' =Ca', orequivalentha= L =LTD, While the numerators and denominators of these expres-
so that points are perpendicular precisely when one is inci-Sions depend on choices of representative vectors and ma-
dent with the dual of the other, and similarly for two lines. trices foras,az,C,L1,L2 andD, (which are by definition

A point a is null precisely when it is perpendicular to it- defined only up to scalars), the overall expressions are

self, thatis, whemCa' =0, while alineL isnull precisely ~ well-defined projectively.

when it is perpendicular to itself, that is, whehDL = 0. It follows that q(a,a) = 0 and S(L,L) = 0, while
The null points determine theull conic, sometimes also ~ d(ai,a2) = 1 precisely whena; | a;, and dually
called theabsolute S(L1,Lp) =1 precisely whem; L L,. Also quadrance and
Universal Hyperbolic geometiip the Cayley Klein model ~ SPréad are naturally dual:
arises from the special case S(af, aﬁ) —q(ay,a).
10 0 In [16], it was shown that both these metrical notions can
C=D=J=1l0 1 ol. 3) also be reformulated projectively and rationally using suit-
0 0 -1 able cross ratios (and no transcendental functions!) To

connect with the more familiar distance between points
d(a1,a2), and angle between liné{L,L>) in the Klein
In this framework the poina = [x:y: 7] is null precisely  projective model: when we restrict to points and lines in-
whenx? +y? — 72 = 0, and dually the liné. = (I : m: n) is side the null circle,
null precisely wher? + n? —n? = 0. So we can picture
the null circle in affine coordinates = x/zandY =y/zas
the (blue) circleXx?2+Y2 = 1. Thequadranceq between  S(Li,Lz) = sir?(8(Ly,L2)).
points and thespread S between lines are then given by
essentially the same formulas:

q(ar,a2) = —sint? (d(a,a2))  and

For a triangleagazaz with associated trilateradl;LoL 3, we
defineq: = q(ag,a3), g2 = q(a1,a3) andgs = q(ag,a2),
andS; =S(Lp,Ls3), S =S(L1,L3) andSs = S(L1,L2). The

A iy1:a],[xe1y2:2)) main trigonometric laws in the subject can be restated in
(X1Xo + V1Yo — 2120)? terms of these quantities (see UHG | [17]).
(G -4) (6 +¥3-3) : .
S((l1:my:m), (I My mp) @) 2 The parabola and its construction
1 (I1lo + mymp — ngnz)? In this section we introduce definitions and some basic re-
- (|% T m% _ ”%) (@ T m% _ n%) : sults for aparabolain universal hyperbolic geometryVve

will work and illustrate the theory in the familiar Cayley-

Klein setting with our null circle/absolute the unit circle in
The figures in this paper are generated in this model, with the plane. The situation is in some sense richer than in the
however the outside of the null circle playing just as big gyclidean setting because adiality: whenever we define
arole as the inside—this takes some getting used to for thegp, important poink, its dual lineX = x* is also likely to
classical hyperbolic geometer! In addition, it will be nec- pe important, and vice versa. We remind the reader that we
essary for us to adopt a more general and flexible approachyij| consistently employ small letters for points and capi-
to deal with projective changes of coordinates, which will 5] |etters for lines, with the convention thatfis a point,
be ne_eded to study the parabola in what we call standarthenx; — x- is the corresponding dual line and conversely.
coordinates. So what is a parabola in the hyperbolic setting? As already
So more generally, the bilinear forms determined by discussed in [9], the definition is not obvious: there are
a general 3< 3 projective symmetric matribxC and its several different possible ways of trying to generalize the
adjugateD can be used to define the dual notions of Euclidean theory. Recall thatéfis a point and. is a line,
(projective) quadrance q(az,az) between pointg; and then the quadranag(a,L) is defined to be the quadrance
ap, and projective) spreadS(L1,L,) between line&; and betweera and the foot of the altitude line fromato L.
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Figure 2: A parabola®, with foci f; and £

Definition 1 Suppose that f and % are two non-
perpendicular points such thag f> is a non-null line. The
parabola P, with foci f; and % is the locus of a point p
satisfying

(6)

The lines = fll and b = f2L are thedirectrices of the
parabola®y.

q(f1, po) +a(po, f2) = 1.

This definition is likely surprising to the classical geome-
ter. In Euclidean geometry, such a relation definesde,

so at this point it is not clear what justification we have for
our definition of a parabola. The following connects our
theory with the more traditional approach in [11] and [7].

Theorem 1 (Parabola focus directrix) The point p sat-
isfies (6) precisely when either of the following hold:
or

d(f1, po) = d(po,F2) d(f2, po) = d(po,F1)-

Proof. If (fipo)F1 =t1 and (fopo) F2 = to are the feet
of the altitudes from a poinpg on the parabola?, with
foci f1 and f, to the directrice$; andF, then f; andt;
are perpendicular points, as aeandt,. It follows that
q(f1, po) +d(po,t1) = 1 and q(fz, po) + d(po,tz) = 1.
But then (6) is equivalent tq(f1, po) = q(po,F2) or to
a(f2, po) = q(po,Fr)- O

In this way we recover the ancient Greek metrical defini-
tion of the parabola, but we note now that there tave
foci-directrix pairs: (f1,F») and (f,,F1). This is a main
feature of the hyperbolic theory of the parabola: a funda-
mental symmetry between the two foci-directrix pairs.
The reason for the index 0 on the poipy and the
parabola?y will become clearer when we introduce the
twin parabola?®. We observe that the fody and f; do

not lie on the parabolds, since for example iff; lies on

P, thenq(fy, f1) +q(fz, f1) = 1, which would imply that

q(f1, f2) = 1, contradicting that the assumption of non-
perpendicularity off; and f,. In Figure 2 we see an ex-
ample of a paraboldy, in red, with foci f; and fz, and
directricesd—; andF,, also in red.

Q]

Figure 3: Various examples of parabolas

In Figure 3 we see some different examples of parabolas
over the rational numbers, at least approximately. When
the foci f; and f, are both interior points of the null circle

C, there is no poinp satisfying the conditiom(p, f1) +

q(p, f2) = 1, since the quadrance between any two interior
points is always negative, and the quadrance between an
interior point and an exterior point is greater than or equal
to 1. This paper deals with non-empty parabolas, by ex-
tending the field if necessary, as we shall see.

Theorem 2 (Parabola conic) The parabola®y with foci
fy and £ is a conic.

Proof. Supposethay =[x : y1 : zz] andfa = [x2 1 y2 : 22].
Then the poinp = [x:y: Z] lies on® precisely when
(@ +y2—2) (G +Y; -3

(- )
[ etyy-2)°
(@ +y2—2) (% +Y5 - B)
which yields the quadratic equation
(C+y=2) (G +¥i—Z) (G +Y5 - B)
= (X +yy1—22)° (B +y3— B)

+ (00 +yye —22)° (G +Yi - B).

(xxa +yy1 — zz)°

1

2.1 Basic definitions

We now define some basic points and lines associated to a
parabola®, with foci f, and f,, and directriced; = f;-

17
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and F = f5-. The axis of the parabola®, is the line
A= fifo. Theaxis point of % is the dual poina = A’.

By assumption the axi& is a non-null line, so that does
not lie onA.

If the axisA has null points, we shall call these thgis
null points of &, and denote them big1 andny, in no
particular order. The axis point and line will generally be
in black in our diagrams, while the axis null points will be
in yellow.

Ry
fi

p0

Figure 4: Dual and tangent lines, twin point and focal
lines

Theorem 3 The axis A= f1fy of a hyperbolic parabola
P is a line of symmetry, and its dual point a is a center.

Proof. We denote the reflection of an arbitrary popatly-

ing on % in the axis lineA by ra (po) = Po- Then we need
to prove thafpg also lies on?. Recall that the hyperbolic
reflection in aline (or equivalently the reflection in the dual
point of that line) is an isometry, so for any two poimats
andb,

a(a,b) =q(ra(a),ra(b)).
Thus, sincefy, f> are fixed byra (they lie onA),

1=q(f1, po) +a(f2, po)

=q
a(ra(po),ra(fe))+a(ra(po),ra(fi))
=d(Po. f1) +a(Po, f2).

This shows thapg lies on the parabol&. Since reflecting

po in Ais the same as reflecting in a, the pointais also
the center of the parabola. O

The base pointsof #y are the pointd; = AR andb, =
AF. The dual lineB; = af; andB; = af, are thebase
lines of P. Both base points and base lines will be shown
in blue in our diagrams.

Theverticesvy andv, are the points, if they exist, where

A generic point on®, will be denotedpg, and itsdual line
denoted?y. Both are shown in black in our diagrams, with
often a small circle drawn arounmh to highlight it. The
tangent line to 2 at po will be denotedP?, and its dual
point p° will be called thetwin point of pg. Both p® and

PO will be shown in grey.

Thefocal lines of pgp are Ry = ppf1 and R, = ppf2, and
thealtitude base points ofpg aret; = RiF; andt; = RoF».
The duals of the focal lines are tifigcal pointsry = Rf
andr; = Ry of po. The duals of the focal base points are
the altitude base linesT; =t;- and T, =ty of po. The
focal lines and points will be shown in green in our dia-
grams. Figure 4 shows these various basic points and lines
associated to the parabadra.

2.2 Construction with a dynamic geometry program

Itis helpful to have a construction of a hyperbolic parabola
that can be used with a dynamic geometry package, such
as Geometer’'s Sketchpad, GeoGebra, C.a.R., Cinderella,
Cabri etc., used to create loci. For this it is helpful to re-
fresh our minds about the construction of the Euclidean
parabola, because a similar technique applies to construct
a hyperbolic parabola. We also mention some related facts
that will have analogs in the hyperbolic setting.

Firstly, we choose a poirf (focug, and a linef (direc-

trix), not passing througk. Draw the perpendicular line

a (axis) toF throughf. Using an arbitrary point on the
directrix f, construct the midpoin¥ of the sideT F, and
draw the perpendicular linp to TF throughM. Finally,

the intersection of the altitudeto f throughT and the line

pis a pointP on the parabol&, which is then the locus of

the pointP asT moves onf, as in Figure 1.

Figure 5: Construction of a hyperbolic parabol&

To construct a hyperbolic parabafa from a pair of foci
f1 and f, with axisA, we proceed as in the Euclidean case,

the parabola meets the axis; they are in no particular orderbut we must be aware that the existence of midpoints is

The duals of the vertices are thiertex linesVi = v;- and
Vo = vy. The vertices and vertex lines will be shown in
black.

18
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the property that the sidif, has midpoints, call them
mt andp?, with corresponding midlined? = (ml)L and

PO = (po)l. One way of choosing such a potats to first
choose an arbitrary poiag onF; and then refledt; = FA

in a1 to obtaint;. In the triangldt; f2, two sides now have
midpoints, so by Menelaus’ theorem ([17]) the third side
t1 f> will also have midpoints.

Now construct the mees = P°R; andn; = MRy, where
Ri1 =t1f1. Thenpp and ny will both be points on the
parabola®y. The Figure also shows the symmetry avail-
able here: it is equally possible to choose a ptimin the
other directrixm = f;- with the property that the sidef;
has midpoints, call them? and p°, with corresponding
midlinesM2 = (m?)" andP® = (p°) . In that case the
pointspp = P°R, andny = M2R,, whereR, = to o, lie on
the parabola?. In Figure 5, the two pointg andt, are
related by the fact thatt, meets the axi#\ at the same
point j© as doed?; this accounts for the fact thatf, and
t,f; have a common midpoir®.

The justification for this construction will be given later,

after we establish a suitable framework for coordinates andhyperbolic parabole,

derive formulas for all the relevant points.

2.3 Dual conics and the connection with sydpoints

1

«~ o

Figure 6: The parabola®, and its twin?°

3 Standard Coordinates and duality

3.1 The four basis null points

In order to bring a systematic treatment to the study of the
we need an appropriate coordinate
system to bringP into as simple a form as possible. Al-
though there is a great deal of choice for such an attempt,
the one that we present here is the simplest and most ele-
gant we could find; in it the beauty of the parabolic theory

The theory of the hyperbolic parabola connects strongly is reflected in an elegance and coherence in the correspond-

with thenotion of sydpointas developed in [20].

The reason is that the sydpoirftsand f2 of the sidefy f5,
should they exist (and our assumptions on our field will

guarantee that they do) are naturally determined by the ge

ometry of Py, and then they become the foci for ttvein
parabola®? (in orange in our diagrams), which turns out
to be the dual of the coni€y with respect to the null cir-
cle C. The sydpoint symmetry between the side§ and

f1f2 s key to understanding many aspects of these conics

Although we will be studying the twin parabola more in

ing formulae.

The key point is that aside from the two fo&i and f;
which we used to define the parabola, there are four other

points which naturally lie on the parabola and which can

be used effectively as a basis for projective coordinates:
the two vertices; andvy, together with two null pointeg
andap which are symmetrically placed with respect to the
axis.

We need to say some words about the existence of four

such points. A priori there is no guarantee that the axis

the next paper in this series, it will be useful to be aware of A Meets the parabola; it will do so when the correspond-

it, as it explains some of our notational conventions.

In Figure 6, we see the parabakg with foci f1, f; and a
point po on it, as well as the twin parabof&’ with foci
f1, 2 and the twin poinp® on it, which is the dual of the
tangentP? to Py at po. Reciprocally the dual opyg is the
tangent to?° at p°. Note carefully that the tangents to
both the parabol& and the null circleC at their common
meets, namely the null pointg andadp, pass through the
foci of the twin parabol&®. Dually, note that the tangents
to both the parabol#®® and the null circleC at their com-
mon meets, namely the null poirig anddo, pass through
the foci of 7. This Figure also shows the twin directrices
FlandF?, and the twin base points andb?.

ing quadratic equation formed by meeting the line with the
conic has a solution. The existence of the vertices is then
an assumptiorthat we may justify by adjoining an alge-
braic square root, if required, to our field.

We will use the four points/,vo, 09 and tg, no three
which are collinear, as a basis of a new projective coor-
dinate system.

Theorem 4 (Parabola vertices)If there is a non-null
point v lying both on the axis A and the parababg, then

the perpendicular pointy= v; A also lies on both the axis
and the parabola, and these then are the only two points
with this property.

19
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Proof. Suppose that; lies on the axiA= fifpandonthe 3.2 The Fundamental theorem and standard coordi-
parabola. Then i¥; is not a null point, nates

We now invoke the~undamental Theorem of Projective
Geometry which allows us to make a unique projective
change of coordinates so that the four basis points become

q(fi,v1) +q(va, f2) = 1.

Definev, = viA, so thatq(vi,v2) = 1. Now recall that

if a,b andc are collinear points wittg(a,b) = 1, then  v; =[0:0:1 v2=[1:0:0

q(a,c) +q(c,b) = 1. Soq(vl,_fl)Jrq(fl,vz):l and Go=[1:1:1 To=[1:-1:1.

q(vi, f2) + q(f2,v2) = 1. Combining all three equations

we see thatj(f1,v2) +q(vo, f2) = 1, showing that/, also It follows that

lies on the parabola. Since a line meets a conic at most at L L .

two points, there can be no other points on the axis and ot =V1v2=[0:0:1x[1:0:0=(0:1:0.

Po. U These new coordinates will be callstndard coordi-
natesfor the parabolaP, or parabolic standard coor-

We can see from Figure 3 that a parabola need not necesdinates Note carefully that the introduction of such new

sarily meet its axis. However any given line will meet a coordinates will necessarily change the form of the quad-

given conic if we are allowed to augment the field to an rance and spread!

appropriate quadratic extension. So by possibly extend-We now define, as in Figure 7, the points obtained by re-

ing our field,we will henceforth assume that our parabola flectingo anddg in vo: namely

Py meets the axis A f1f,. By the above theorem, it then _ .

meets this axis in exactly two points, which we call the Po=Trv,(do) and Bo=ry, (do).

verticesof the parabola, and denote yandv.. Because reflection is an isometry, these are also null points.
What about the existence of null points @? The meet  Our notation with the overbar is something we will employ
of any two conics might have from zero to four points. consistently:ao and@g are reflections in the poird, or

equivalently in the dual liné\, and so similarly foio and

Bo.

Theorem 5 @ points) We havefy = (aovz2) (Oov1) and
Bo = (Tov2) (dpva1). Furthermore in the new coordinate
systenfo=[-1:1:1JandBo=[-1:-1:1].

Vi

Proof. The quadrangle of null pointse@oBoPo has one
diagonal points,, obviously from the definition oo and

Bo. It has another diagonal poiat because bothgog and
BoPo pass it; the first by construction and the second be-
cause it is obtained from the first by reflectionvin which

lies onA = al. So the third diagonal point is the dual of
avz, which isvy by the previous theorem. It follows that
Bo = (agvz) (Opva) and Bo = (OigV2) (agv1). Now we can
calculate that

Bo=([1:1:x[1:0:0)x([1:-1:1x[0:0:17)

Figure 7: The four basis pointsivv,, g andtg

The parabol@ with foci f; and f2 need not meet the null
conic C. However for most examples, especially those

of interest to a classical geometer working in the Klein = (0:1:=1)x(1:1:0 =[-1:1:1
model in the interior of the unit disk, we do have such B, — ([1:-21:1x[1:0:0)x([1:1:1x[0:0:1)
an intersection—at least approximately over the rational ~ _ 0:1:Dx(1:-1:0=[-1:-1:1] 0

numbers. So by possibly extending our field to a quartic

extensionwe will henceforth assume that our paraboa P When we apply a general projective transformation of the
passes through at least one null poay. By the assump-  projective plane to get the four pointg,v2,0p and tg
tion in the previous theorem such a null poing cannot into standard position, the metrical structure will change.
lie on the axis, so if we reflect it in the axis we get a sec- While we started with the symmetric matdxor the form,
ond null point®g = ra(ap) which also lies onf, since the new symmetric matrix is of the for@ = MJM' for

P is invariant under,. Clearly no three of the fourasis some invertible matriM. However this matrixC is not
points vi,Vz2,00 and0g are collinear, since they all lie on  arbitrary; since we require that the four points lie on the
the parabola. parabola?y. We now arrive at the crucial result which sets
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up our coordinate system, and is the basis for all subse-But there is also the condition thaf is a parabola

guent calculations. This is the fact that the new ma@jx
and its adjugat®, have a particularly simple form, de-
pending on a single parameterwhich subsequently ap-
pears in almost all our formulas.

Theorem 6 (Parabola standard coordinates)The sym-
metric bilinear form in standard coordinates is given by
Vi ® V2 = v1CVv} where

a? 0 0
C=|0 1-a2 0 and
0 0 -1
a?—-1 0 0
D=adj(C)=| 0 —a? 0 (7)
0 0 o?(1-0a?)

for some numbea. In terms ofa, the parabola®y has

equation xz- y? = 0 and its foci are
fi=la+1:0:a(a—1)] and fo=[1—a:0:a(a+1).

Proof. Suppose that our new bilinear form in standard co-
ordinates is given by; ® v, = v;Cv] where

a d f
C=1|d b g and

f g c

bc—g> fg—cd dg—Dbf
D=adj(C)= |fg—cd ac—f2 df—ag|.
dg—bf df—ag ab—d?

The fact that the four pointsig = [1:1:1, 0o =
[1:-1:1,Bo=[-1:1:1 andPBo=[-1:—1:1 must
all be null points means

aoCad = oC (@0)" = PoCPY = PoC (E)T —o.

These conditions lead to the following linear system of
equations involving the entries @f.
a+b+c+2d+2f4+29=0

a+b+c—2d+2f—-29=0

at+b+c—2d—2f+29=0

at+b+c+2d—-2f—-2g=0.

From this we deduce thdt= f =g=0, anda= — (b+c).
So the matrices have the form, up to scaling, of:

fa 0 0
C=|0 1—-a O and
0 0o -1
[a—1 O 0
D=1] 0 —a 0
| 0 0 -a(a—-1

with foci f; and f2, passing through all four basis points
vi=1[0:0:1,v,=[1:0:0,00=[1:1:1 and &g =
[1:—1:1]. Since the foci lie on the axi& = viv,, we can
write f1 =[my : 0: 1] andf, = [mp: 0 : 1] for somemy, mp.
Then recall that the quadrance and spread are determined
by the projective matrice€ andD by the rules (5).
We then compute

(ammp — 1)
(ami - 1) (amg - 1)
_ g (M- mp)?

(amg—1) (amg—1)°

Sincef; and f, are by assumption not perpendicular,

(8)

Q(flv fz) =1-

ammp —1+£0.
Also v, andv; lie on %, so that
q([m:0:1,[0:0:1)+q([m:0:1],[0:0:1)-1
_ (amymp — 1) (amymp +1)
(a3 1) (an 1)
q(m:0:1,[1:0:0)+q([m:0:1],[1:0:0) -1
(ammp — 1) (ammp +1)
(ami —1) (amg - 1)

Both these conditions, given (8), are equivalent to the rela-
tion

=0 and

=0.

ammp+1=0 )
which we henceforth assume, implying that we may write
mp=m and _ 1

h = mp = am

for some non-zero number.

In addition we must ensure that and@g lie on P, but
since these are both null points, the quadrangéds, ag)
andq(fa,0p) etc. are undefined, and we must rather work
with the general equation of the parabola. This is

. . . . 1 . . . .
q([m.O.1],[x.y.z])+q<{—a—m.0.1] ,[x.y.z]) -1
damxz-y*(a—1) (anf—1)

C (ame—1)(ak—ay+y2—72)
which shows the equation of the parabola to be
damxz-y?(a— 1) (an? — 1) =0. (10)

Now the condition thatip=[1:1: 1 andog=[1:—-1:1]

lie on % is that

4am— (a—1) (anf - 1) =a(1—a)m?+4am+ (a—1)
=0. (11)
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Given that we started out with the existencdpénd f, as- s
sumed, we see that the discriminant of this quadratic equa-
tion —

Py
Fy

(4a)® —4a(1—a)(a—1) =4a(a+ 1)

must be a square. But this occurs precisely whes a
square, say

a

PU
a=o02 .

In this case the quadratic equation (11) has the form
o? (1—o?) m? + 4a’m+ (o — 1) = 0 with solutions
Figure 8: A standard coordinate view of a parabola

l1+a 1-

Mm=m = m and mp= m- Theorem _7 (Parabola quadrance) Thequadrance of the

parabolais
ining th ith (10). the i .

Combining these with (10), the identity (02+ 1)2

Ap, = q(fy, f2) = a2
5 (0+1) 2 > 1+ 2 a
oy (o — 1)xz—y2 (0"~ 1) | a (a (o — 1)) -1 Proof. We compute that
2
_ 4(z—y*)a(a+1) -0 dp,=q([a+1:0:a(a—1),[1-a:0:a(a+1)])
ot 1 (a2+1)?
L a2 2 _

shows that the equation of the parabola pleasantly simpli-  4a2 (@-1)7(a+1)77+1 402 =

fies to be . . .
We note thatyg, is a square. This is a reflection of the fact

XZ—y? = 0 (12) that the assumption of the existence of vertices implies that

- the sidesfi1b, and f2b; have midpoints, see the Midpoint
. theorem [17].

The foci may now be expressed as The condition for points and lines to be null, in other words
the equation for the null circle, is the following in standard

fi=[m:0:J=[a+1:0:a(a—1)] and coordinates.

fo=Mm:0:=[1-a:0:a(a+1)]. O
Theorem 8 (Null points/ lines) The point p=[x:y: 7 in
standard coordinates is a null point precisely when

Notice that
o+ (1-0?)y? —Z=0.

a? 0 0 . . . _
detlo 1-a2 ol = az(a ~1)(a+1)#£0 The line L= (I : m: n) is a null line precisely when
0 0 -1

(1-0?) 12+ a?m?+a? (a? — 1) n?=0.
soa # 0,41, sinceC is an invertible projective matrix.

The following Figure shows a view in the standard coor-
dinate plane, wheré:y: 1] is represented by the affine
point[x,y]. This corresponds roughly to a valueoot= 0.3. [x:y:ZC[x:y:Z"=0 and
While it is both interesting and instructive to see different
views of such a standard coordinate plane, this is some—<I :
what unfamiliar to the classical geometer, so we will stick
mostly to the Universal Hyperbolic Geometry model for
our diagrams, where the unit circle always appears in blueWe can now give explicit formulas for quadrance and
as the unit circle® +y? = 1. spread in standard coordinates.

Proof. These follow by using (7) to expand the respective
conditions

m:n)" D(l:m:n)=0. O

3.3 Quadrance and spread in standard coordinates
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Theorem 9 (Quadrance formula) The quadrance be-
tween the points p= [x1:y1:z1] and p = [X2: Y2 2]
in parabolic standard coordinates is
a(p,p2) =

(Xay2—Xays) "ot + ((X1Zz —%21)° (Y122~ Y221)* — (X1y2—%eY1) 2) o2+ (12— yo71)?
B (03¢ —¥ (0%~ 1) - Z) (62— (a2~ 1) - 3)

Proof. From (4) and formula (7) fo€,

(X1,y1,21] C[X2, Y2, Zz]T = 01X — Y1Y2 (0(2 - 1) — 2.
The formula follows using an identity calculation. [

Theorem 10 (Spread formula) The spread between k&
(li:mp:ng)and b = (I :mp i np) is
S(L1,L2)

(002~ 12n0)* = (mung = mony)?) o2 + (e — l2m)? — (s — any)°)
:(If(az 1) —o2mg —a2nZ (a2 —1)) (13 (a2 — 1) —a2mg —a?n3 (o — 1))

Proof. From (4) and

[l2,my, ng] D [, mp, na)"

= l1lo (0% — 1) — a®mym, — a? (0 — 1) mny
the formula follows using an identity calculation. [

Theorem 11 (Axis reflection) The reflection g in the
point a has the form

ra(x:y:z)=[x:-y: 7.

Proof. We use the usual formula for reflection in a vector:
L (uwvyv (v

rv(u)=2 YRY u=2 ol u.

With the matrixC above, and working with regular vectors,

we get
[0,1,0/C[x,y,Z"
ro.1,0 ([%¥:2)) _ZW 0,1,0] - [x,,Z]
= [_vav_z] = [X’ =Y, Z]' U

3.4 Duality with respect to a conic and parametriza-
tions

Let’'s recall some basic facts from the general theory of

equationL"BL = 0 (where we regard lines as projective
column vectors).

More generally, we can regard the projective makias
determining a projective bilinear form, which is equivalent
to a duality between points and lines. For a general point
p, not necessarily lying o, its dual with respect toC

is the linep™ = Ap", while for a general poirit, its dual

with respect taC is the point_L- = LTB. These are inverse
procedures.

These notions of course go back to Apollonius, and it could
be argued that this duality between points and lines is the
essential feature or characteristic of a conic. But this mod-
ern formulation in the language of linear algebra and matri-
ces makes many of its aspects much easier to understand,
see [3], [12].

In this work, the main example of duality is with respect
to the null circleC, for which we will stick with the nota-
tion that if x; is a point, therX; = Cx! refers to the dual
line and conversely. However the secondary duality with
respect to the parabofg will also be involved, as we now
see.

The equation (12) for the parabafa in standard coordi-
nates, namely (x,y,z) = xz— y?> = 0, can be expressed in

homogeneous matrix form @A p’ =0 or
T
X y ZAlx y 4 =
where
0 0 1 0O 0 2
A=|(0 -2 0| and adjA)=B=|0 -1 0.
1 0 O 2 0 O

Theorem 12 (Parabola parametrization) The parabola
Py is parametrized, using an affine parameteby p =

[t2 it 1} = p(t) or by using a projective parametér: r|

as p = [t2:tr:r?] = p(t:r). The tangent line Pto the
parabola at p = [t?:t:1] is PP = (1:-2t:t?) = P(t)

or projectively the tangent togp= [t?:tr :r?] is PO =

(r?:—2rt:t?) =P(t:r). Aline L= (I : m:n) is tangent
to the parabola precisely wher?re- 4nl.

points and tangents to a projective conic. Suppose thatProof. The simple form of the equatiotz = y* makes the

a general conia is given by the projective symmetric
3 x 3 matrix A, with adjugateB, so that a general point
p=[x:y:7 lies on C precisely whenpAp" = 0. The

tangent lineP to a pointp lying on Cis P = p- = Ap'.

Dually, the point at which a tangent linemeets the conic
is| =L+ =L"B. While a pointp on the conic satisfies
the equatiorpAp™ = 0, a lineL on the conic (that is, a

tangent line to the conic at some point) satisfies the dual

parametrization immediate. The formula for the tangent
line is a direct application of the discussion above, so that

0 0 -1 1

PP=Apl=|0 2 of[t2 t 1" =|-2

-1 0 O t2
=(1:-2t:t%)
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or using projective parameters

0 0 -
0 2 off tr r3 =

-1 0 O

rZ
[—Zrt]
t2
(r2: —2rt :t%).

The relatiom? = 4nl is exactly satisfied by those lines of
this form. O

Theorem 13 (Tangent meets)if pp=p(t) and = p(u)
are two distinct points or®, then their tangents Pand
Q° meet at thepolar point z= P°Q% = [2tu:t+4u: 2]
while Z= pogo = (1: — (t+ V) : tv).

Proof. We compute that
z=PQ°=(1:-2t:t*) x (1:—2u:u?)=[2tu:t+u: 2]

and

podo= [t?:t: 1] x Vivil] =(1:—(t+Vv):tv). O
The projective parametrization afy has the advantage
that it includes the important point at infinigy(1: 0) =
[1:0:0 =v,. We can recover the affine parametrization
by settingr = 1, and we can go from the affine to the pro-
jective parametrization by replacingvith t /r and clearing

Theorem 15 (Focus directrix polarity) The focus { is
the pole of the directrix fwith respect to the parabola
Py, and similarly the focusafis the pole of the directrix

1.

Proof. We check that

F/B=[a(a—1) 0 a+1]B=[a+1:0:a(a—1)]="f
or

Aff=Afo+1 0 a(a—l)]T:<a(a—1):0:0(+1>=Fz.

T

Similarly,

F/B=[a(@+]) 0 1-a|B=[-(a—1):0:a(a+1)]="f,
or

Af=A [1-a 0 0((0(+1)]T =(a(0+1):0:1—a)=F.

O
In order for the parabolg’ = xzto have a null poinp(t),
the parametet must satisfy[t?:t: 1] C [t?:t: 1]T =0,
which yields (t?—1) (t?a?+1) = 0. Over the rational
field, the values = +1 agree with the null pointsg =
[1:1:1 anddp = [1:—1: 1] with which we begun our
work.
However, there are also another two solutions which are in-

denominators. In practice we will generally use the affine Visible over the rational field, but exist in an extension field
parametrization, since it is requires only one variable, not OPtained by adjoining a square raaif —1. These points

) > e e — Mg a2 S iy 2 :
two. The existence of this simple parametrization will be arél1 = [1tio: —0?] andZz = [1:—ia:—a?]. In this

extremely useful for us: giving us the same amount of con-
trol over the hyperbolic parabola as we have over the much
simpler Euclidean parabola (which of course can be posi-

tioned to have exactly the same equation!)

Theorem 14 The dual of the point = [t?:t:1]
on B is B = (t’a®:t(1-a?):—1). The dual
of the tangent line P = (1:-2t:t%) is P =
[a2—1:2ta?: —t?0? (a®—1)].

Proof. We compute that

a? 0 0
Po=Cpl=|0 1-02 ©
0 0

][t2 t 1"

-1

and
; a’-1 0 0
PP=(P°) D=1 -2t t?J]| 0 —o? 0
0 0 a?(1-a?)

= [0®—1:2a?: —t?0® (a® - 1)]. O

We will say thatp? is thetwin point to po. Later we will
see that the locus gi® is also a parabola, whose fott
and f? are the sydpoints off f5.

24

paper we will not mention these points too much.
3.5 Formulas for directrices, vertex lines, base points
and base lines

We can now augment our formulas using standard coordi-
nates. The directrices are

Fi=f{=Cla+1:0:a(a—1)]"=(a(a+1):0:1—a)
Fo=fr=C[l-a:0:a(a+1)] =(a(a—1):0:1+a).

The base points are the meets of the directrices and the axis
line. They are

bi=FA=(0®(@+1):0:a(l-a))x(0:1:0
=[a—1:0:a(a+1)]

by=FRA={(a?(a—1):0:a(1+a))x(0:1:0)
=[o+1:0:a(1—0a).

The duals are thkase linesB;, By, which are the altitudes
to the axisA through the focify, f of the parabola:

Bi=bf =C[(a—1):0:a(a+1)]
=(-0(a—1):0:a+1)

Bo=by =C[(a+1):0:a(1—a)
=(a(a+1):0:a-1).
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The vertex lines V1, V, are the altitudes to the axi& with dual thetwin J-line
through the verticeg,, v» of the parabola

J0=ap’=[0:1:0x [0®-1: 2a? ~t?a?(0®~1)|={*a?0:1).
Vi=vi=C[0:0:1=[0:0:1 and

Vo=vi=C[1:0:0=[1:0:0. Th_e meet of the twinJ-line with the axis is the@win h-
point
\ W P=AP=(0:1:0x(t?a?:0:1) = [-1:0:t%0?]
/ Bo y, andits dual is théwin H-line
h HO= (h%) " =aj®=[0:1:0x [t?:0:1 =(1:0:t?).

By

AN

Jo

Q
|

Figure 9: Some basic points associated to a parab@ia
fi A

3.6 Thej, handd points and lines B0

il

We define thexis null points to be the meets of the axis
and the null coni€. These points exist under our assump-
tions, and are

Nn=AC=1[1:0:a] and n,=AC=[-1:0:qa].
Figure 10: The j and h points and lines
We now introduce some other secondary points and lines
assqciated to ageneric p_o'pﬁon the_parabol&’o._ The re- Theorem 16 (Null tangent) The tangent P to the
flection of po = [t?:t : 1] in the axis is thepposite point  paranola 7, at py is a null line precisely when glies
P on a directrix, and in this case the twin point js a null
Po=ra(po) = [t*: —t:1]. point lying on the other directrix,gjcoincides with a focus,

Clearlypg aso lies on the parabola. and [ with the other focus.

The meet of the dual linBy with the axisA is the j-point
® P Proof. If the tangenP® = (1: -2t :t?) atpg = [t? :t: 1]

jo=PoA= <t2q2;t (1_q2) —1)x(0:1:0=[1:0 ;tzaz] is a null line, then by the Null points/lines theorem
with dual theJ-line (1-a?) +40%? +0?(a® — 1)t* = 0.

By duality Jp is the altitude fronpg to the axis, and so also
Jo = poPo. The meet of thel-line with the axis is the foot
of this altitude; it is theéh-point

—~

a(a+1)t2— (a—1)) (o (a—1)t?+ (a+1)) =0

so that
ho=Akb=(0:1:0x(1:0:—t?)=[t?:0:1 1 1
< )=l ] 2= 97° o 2o 3PS (13)
and its dual is théi-line a(a+1) a(a—1)
Ho=hg =ajo=[0:1: qx[l 0 :tzaz}:<t2a2 ‘0: _1>. Now pp = [t2:t : 1} is on the directriX; or F, precisely
when
The meet of the tangent liR® with the axis is thewin N
j-point [t?:t:1] [@®(a+1):0:a(l—a)] =0  or
2.4 2 N - T
jP=PA=(1:-2t:t*) x(0:1:0 = [-t?:0:1] t:t: 1] [o*(a—1):0:a(l+a)] =0

25
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and similarly, the poinp®= [0?—1: 2ta?: —t?02 (a?—1) ] parabola. Define the lines

is on the directriX; or F, precisely when

F2=ae@p=[1:1:1x[1:-1:1=(1:0:-1)
T J—

0?—1: 20%: —t?a® (0®~1)] [@®(a+1):0:a (1-a)] =0  Bl=ReBo=[-1:1:qx[-1:-1:1=(1:0:1)

or

T with corresponding axis meets
0?-1: 20?: —t?a? (a®~1)] [0?(a—1): 0:a(1+a)] =0.
b>’=F?A=(1:0:-1)x(0:1:0=[1:0:1
These conditions are exactly the same as (13). Using (13)f1 —BlaA— (1:0:Dx(0:1:0=[-1:0:1.

we get eitherjo=[1:0:t?0%] = [a+1:0:0(a—1)] =

fi and j© = [-t?2:0:1] = [1-a:0:a(a+1)] = The duals of these points and lines are
f or jo = [1-a:0:a(a+1)] = f, and O = B
[@+1:0:a(a—1)] = fi. O f2=(F%) =[1 0 -1]D=[1:0:0?

The pointsf! and 2 are thetwin foci, or t-foci for short
of the parabola@P. They will play a major role in the the-
ory. The dual lines off* and f?, namelyF* andF? re-
spectively, are thé-directrices of . The meets of the
t-directrices and the axié are F'A = b! and F?A = b?
respectively; these are thidase pointsof #. The dual
lines ofb! andb?, namelyB! andB? respectively, are the
t-base linesof . These are all shown in Figure 12.

Figure 11: Null tangents and gl do points

We introduce the poinidy anddy to be the meets of the di-
rectrix F, with the parabola?, should they exist, and the
corresponding twin null point§g anddp lying on the di-
rectrixF1. These are important canonical points associated
with the parabola. Since their existence requires solutions |/
to (13), and so a numbersatisfyingt® = a (a® — 1), we

may write

B2

do=FRP=[a-1:t:0(a+1)
do=FP=[a—1:—1:a(a+1)]

and Figure 12: Sydpoints and the twin focit fand 2 of %

d®=& = {(G —1)?(a+1): —2ait:a(a+1)% (a— 1)} Theorem 17 (Parabola sydpoints)The points + and 2

— = are the sydpoints of the sidef,.
do =8 = [(a— 1) (a+1): 200 a o+ 1) (a— 1)] yap el

Proof. We calculate that
where(it)? = —a (0? - 1).
In Figure 11, notice that the lineigd and f13q are joint

tangents to botle” and the parabold, touching?, at the
pointsdp anddp.

q(fi, fY)=q(ja+1:0:a(a—1)],[1:0:-1])

(a(a-1+a?(a+1)®  (a2+1)°
4a3 — 405 T 4a(a2-1)

q(f2, f)=q(l—o:0:a(a+1)],[1:0:-1])
It is a remarkable fact that the theory of sydpoints that we —1_

3.7 The sydpoints of a parabola
(a(a+1) —a?(a—1))? B (a241)

developed in [20] plays a crucial role in the theory of the 403 —4a° ~ 4a(az-1)
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q(f, f2) =q(la+1:0:a(a—1)],[1:0:a?])
(02 (a+1)—a®(a-1)* 1 (a?+1)
4a5—4a7 ~4a(o2-1)

q(f2,f2) =q([1-a:0:a(a+1)],[1:0:a?])

(@®(@-1)+ad@+1)* 1 (a?+1)?

=1t 4a5—4a7 T 4a(a?-1)
Clearly q(fi,f!) = —q(f,f!) and q(f,f?) =
—q(f2, f2) so f! and f2 are the sydpoints of the side
fifo. O

Theorem 18 (Parabola null tangents)The tangents to
the null circle atag anddg meet at £. The tangents to
Py at ap andtg meet at .

Proof. The tangents to the null circle ap andadg are the
dual lines

ag =C[1:1:1" =(a?:1-a%:-1)  and

(@) =C[1: -1:]" =(a?:0?—1:-1)
and these meet at

ag (00) " =(a?:1-0%: 1) x (a?:a?—1:-1)
=[1:0:0%] =2

The tangents to the parababa at g anddy are the lines
Al 1 T=(1:-2:1) and A[l -1 1]'=(1:2:1)

and these meet at
(1:-2:1)x(1:2: 1) =[-1:0:1 = fL O

3.8 Avrational parabola

Vo = [tato+1:0:— (tato — 1)]. Note that
q(ftf2) -1
=q([tf+1:0:— (t#-1)],[E-1:0:— (3 +1)])-1

1 2 (Lt
=2 (tl _tz) t2t2
12

4

is a square. o
We are now interested in sending these paint®o, Bo, Bo
tothepoint§1:1:1,[1:-1:1,[-1:1:1,[-1:-1:1]
respectively, using a projective transformation. Firstly,
we send [1:1:1,(1:0:0,[0:1:0,[0:0:1 to
0o, 00, PBo,Bo respectively by the linear transformation
T1(v) = vN whereN is

—t(tf-1) —2uty t(t2+1)
N=|-t1(tt—-1) 2ut, t(t5+1) |.
th(tZ—1) 2ut, -t (t2+1)

Its inverse sendsg, 0o, Bo, Bo back to[1:1:1], [1:0:0,
[0:1:0,[0:0:7byT(v) = vRwhereR is the adjugate
of N:

—2t1 (t22 + 1) (t1—t)(tito—1) —(tito+1)(t1 +1t2)
R= 0 t2—t2 t2 —t3

—2t1 (t22 — 1) (t1—t)(tito+1) — (it —1)(t1 +1t2) .

Secondly, the linear transformatidp(v) = vM, whereM

sends1:1:1,[(1:0:0,[0:1:0,[0:0:to[1:1:1],
[-1:21:1, [-1:1:3, [-1:-1:1] respectively. Thus,
the required transformationis(v) = v(RM) whereRM is

In this section we show the existence of a two-parameter | (t1t2+é) (Li+tz) (t1—t )O(t ) (1—t) (()tltz -
family of rational hyperbolic parabolas, and give the asso- A '
y yp P 9 —(tito— 1) (ty + 1) 0 (tr—t2) (tato + 1)

ciated transformations to parabolic standard coordinates.

The conic with equation After applying this linear transformation, the matdxs

replaced b
(122 — 1)x° + 2 (122 + 1) x+ (2 —t2) y* + (22 — 1) =0 P Y

C=(RM)1J ((RM)’l)T

meets the null circle at the null pointsg =

[1—t?: 2t :t2+ 1] anddo = [1—t7: -2t :tZ+ 1]. This it (ti—t)2 0 0

is a parabola with foci = 0 a2 0 and
fi = [h+t—ttf+t2:0:t1+t+it2 —t?,]  and 0 0 —tiba(ti+t)?

fo = [ti—th—tit2 —t2ty: 0:t; —tr+t1t2 +t2t,|, axis -

2 [1 2 — Lty — U2 1 2+12+12] D:(RM)TJ(RM)

A=(0:1:0, and t-focif' = [tZ+1:0:—(t?—1)] and

f2=[t3—~1:0:— (t+1)]. The null pointsPo,Bo are Atity (ta + 1) 0 0

2. o0 12 - 2. 42 — 0 2_:2)2 0
Bo=[1—t2:2t:t2+ 1] andBo= [1—t3: —2t: 2+ 1], (tf —13)
and the vertices arer, = Jtit,—1:0:— (t1t2+1)] and 0 0 —Atyty (tg —tp)?
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and we geta = g%g In this new coor-  The focal linesR; andR, also meet the directrices at the
dinate system, the parabola is? = xz with second altitude base pointsiy up, with dual linesUs, Us:
foci f1 = [ta(t1+t2):0:—ta(t1—t2)] and f, =

[to (ty+12) 1 05ty (tp —t2)]. Uy = RoFy = [(a 1) 2ta (a® ~ 1) s o (a + 1))

Example 1 If t; = 1/2 and & = 3 then the parabolar, = [~ (a+1)Ar: 2t (a® ~ 1) tor (o — 1) A
has equatior26x+ 5x? — 35y” + 5 = 0 which meets the |, = uf < (a+1)A1: 2t (o — 1) (o — 1)A1>
null circle at the null pointsog = [3:4:5 and Gg =

[3:—4:5]; has axis A=(0:1:0), foci ff =[-1:0:29 Ur=uy = <

and b =[—31:0:11, verticesy=[1:0:—-5and vy =
[5:0:-1],t-foci f*=[5:0:3 and ?=[4:0:-5], and
Bo=[-4:3:5andBp=[4:3:-5].

aa—1)8: 2 (a2~ 1)%: (@+ 1)),

3.9 Focal and base lines

We now define some other fundamental points and lines
associated with a poifip = [t? : t : 1] on the parabold.

It will be convenient to introduce the quantities

Ap (1) = a+1+t%a —t%a?

tZ 2

M) =a— 1+t2a+
A3 (t) = a+1—t?a+t%a?
As(t) =0 — 1—t20(2—t a
which depends ot and so orpo, and which will appear ~ Figure 13:The rs;t and w points of pon %,

in many formulas to follow. Notice that The t-base linesS;,S and their duals thé-base points
NN =—da (tPa?-1) (+1), AZ-A3=—dat?(a®~1) SnS2are defined by, and calculated as:
DF-05= —4d (t*o®-1), AF-D3=4a(t*o®-1) S = fity = (—2to(a— 1) : (0 — 1) Ap: 2tar(a+ 1))

N5—Ni=4t%a (0-1), A5-Aj=—4a (°~1)(tP0’+1). S = fot; — (2t0?(a+1): — (02— 1) A1 : 2ta (o — 1))
Thefocal lines Ry, R, and the duafocal line pointsry,r» SS=St=FT=[2t(a—1):4;: 2ta(a+1)]
are defined by, and calculated as: N
=S =RNTi=[2t(a+1):A;:—2ta(a—1)].

Ri=fipo=[a+1:0:a(a—1)]x [t?:t:1]

=(ta(a—1):A1: —t(a+1)) Theorem 19 (T-base)Both § and $ lie on the tangent

5 PC. Dually the lines $and S meet at .

Ro=fopo=[1—a:0:a(a+1)]x [t*:t:1]

=(ta(a+1):—Az:t(a—1)) Proof. We verify thats; ands, lie on the tangenP® =
(1:-2t:t%) by computing

rn=R; =FiP
_ [t(a-1)2(a+1) : —aAl:ta(a—l)(chrl)Z] 2t (a—1):Ap: 2ta(a+ 1) [1:—2t:12] T =0
r, =Ry = FPy [2t(0(+1):A1:—2t0((0(—1)][1:—2t:t2]T:0.
= {t (a—1)(a+1)%:ady: —ta(a—1)%(a+ 1)} : The statement thag; andS, meet atp? follows from du-

. 0 ality. O
SinceRy, Ry andP® are concurrent gtp, dually we see that

r1,r» andp® are collinear orPy.
The altitude base pointst; andt, and the duahltitude
base linesT;, T, are defined by, and calculated as:

t1=FiR = [(a— 1)A7 : 4ta ;o (o + 1) 2] w1 = FiS = [(0°~1)(a— 1Az —8ta®: a (0°~ 1) (a+ )47
th=FoRp = [(0+ 1)z : 4ta?: —a(a — 1) Ay] Wy = RS = (@~ 1) @+ : 8ta®: —a (o’ —1) [ —1)Aq]
Ti=tf = fin=(a(a—1)Ay: —4ta (@2-1):—(@+1)a) W= fis=(a(a—-1)h.: 8ta®: — (o +1)4y)
T =ty = farp=(a(a+1) Az : —4ta (a®—1) : (a—1)Az). Wo = fosp = ( )

The w-points wi; andw., and their duals\y andWs, are
defined and computed as:

(a+1)A1: —8ta?: (a—1)A1).
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Theorem 20 @ points collinearities) We have collineari-
ties [[tltzjoﬂ , [[jon_Uz]] aﬂd[[W]_szo]].

Proof. Using the various formulas above, we compute

(a—1)A;1 4ta? a(a+1)A;
det| (a+1)A; 4ta? —a(a—1)A;

—t2 0 1

:O’

t%a?
-1) a(a—l)Al) =0

1 0
det| —(a+1)A; 2ta(a?
-1) a(a+1)A2

(a—1)A, 2ta(a?
and
(a®-1)(a—-1)p; —8ta3 a(a 1)(a+
det((az—l)(a+1)A1 8ta®  —a(a? 1) (a—1) Al)
1 0
=0. O

Theorem 21 (Null focal line) The focal line R of a point
po on the parabolap, is a null line precisely wheAs = 0.
Similarly, the focal line Ris a null line precisely when
Ay, =0.

Proof. By the Null points/lines theorem, the focal line

Ri= (ta(a—1):Ar:—t(a+1)) of pp=[t2:t:1] isa
null line precisely when

(ta (a—1):A1: —t(a+1)) D {ta (a—1):Ap: —t (a+1))" =0
or

o (a+t%a? —t%a+1)° = 0.
Sincea # 0, this is equivalent td\3 = 0. Similarly R, =
(ta(a+1):—Ap:t(a—1))is anullline precisely when

—a?(~a+t2a? +t2a+1)° =0
orA, =0. U

4 Parallels between the Euclidean and hy-
perbolic parabolas

4.1 Some congruent triangles

Recall that the focal lin@&®; = pofy meets the directri¥;
in the pointt;. We will assume that the focal linég and
R> are non-null line so that we havg # 0 andA4 # 0.

Theorem 22 (Congruent triangles) Suppose that the
tangent P to 7 at py meets =t f, at the point M. Then
the trianglespotym! and pofom! are congruent. In par-
ticular i) ¢ (Po,t1) = d(po, f2); ii) g (t,mt) = q(m*, f2);

iii) S» L PY; iv) the tangent B is a bisector of the vertex
RiRz; V) S(S,R1) = S(S,Rz); and vi) the tangent Pis

a midline of the sidé; f,. The same statements are true by
f1 — f2 symmetry if we interchange the indickand2.

Proof. i) The first statemen(po,t1) = q(po, f2) comes
from the definition of the parabol&, and we can also cal-
culate quadrances to obtain

q(po,tr) =q([t?:t: 1], [(a—1)Ar: 4ta? o (a+1)Aq])
AZA‘Z‘AZ q([t?:t:1],[1-a:0:a(a+1)])
=d(po, f2).
ii) Calculate
mt = P°S,

= (1:-2t:t?) x (2ta?(@+1): — (@*~1)Ar 1 2ta@—1))
- [tz (0 —1)2As: —2tads: — (o + 1)2A4}
= [—tz(a —1)%:2ta: (o + 1)2} .

Here we have used the fact that the focal iRagés non-null
so that/\4 is nonzero. Thus

a(t,m’) =
q([(a—l)Al:4t02:a(a+1)A1} , {—tz(a—
1(a®—1)Aq

4  als

:q([—tz(a—l)z:Zta ; (a+1)2},[1—0( 10 :0((0(+1)])
=q(mt, ).

iii) Since the tangent link° passes through, which is the
dual of the lineS, = t; 5, the tangenP? is perpendicular
to the lineSy; and we can also check that

1)2:2ta: (0(+1)2D

(1:—2t:t*) D(2to®(@+1): (0*~1)A;: 2ta (0(—1)>T =0.

iv) The tangenP? is a bisector of the verteR;R; since

S(Ry,PY) = S((ta(a—1): Ap: —t(a+ 1)), (1: —2t: %))
_ (0?-1) (A3 49)
40403
=S(ta(a+1): —Ap:t(a—1)),(1: —2t:t2))
=S(Ry,PY).

V) Now calculate the spreads
S(S2,R1) = S((2ta? (a+1): —(a? — 1) Ar: 2ta (a — 1)),
(ta(a—1):A1:—t(a+1)))
4t (a?+ 1)’
- 16203 - A% (02— 1)
=S((2ta®(a+1): — (0 — 1) Aq: 2ta (o — 1)),
(ta(a+1):—Az:t(a—1)))
=S(S,Ry).
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vi) It is obvious that the tangem® is a midline of the
sidet; f,, sincePY is perpendicular to the lin& =t; f,
through the pointm® which is, from ii), a midpoint of; f5.
The symmetry betweeffy and f2 in the definition of the

parabola®, ensures that all these statements hold also if

we interchange the indicesZ O

Figure 14: Two pairs of congruent triangles

In Figurel4 we see also the poimt = P,S; and the con-
gruent triangleotom? and po f1m?. We call mt and n?
the t-perpendicular points of pp. Note that the theorem
allows us a simple construction of the tang&ftat po:
drop the perpendicular to the lingfs.

Corollary 1 We have i) the trianglest; j© and m!f;j0
are congruent, and ii) the trianglegoty j© and pof» O are
congruent. The same statements are true py f, sym-
metry if we interchange the indicésaand 2.

Proof. The trianglesn! f, j and mlty j© are right triangles
sinceP? is perpendicular t&; we also havey (t;, m) =

q(mt, f2) andm!j® is a common side.

i) We calculate the quadrances

q(t2, % =a([(a—1)A1: 4to®: a (a+1)Aq], [-t2: 0: 1])
_ N
Y,
=q(1-a:0:a(a+1)], [-t?:0:1]) =q(j° f2).

and spreads

oo q(ml’jO) B 16t2%03
S(umti’) = i) = 16%a% — A7 (% - 1)
q(m',j°) 0 fomt
a(jo f2) (f2F, o)
1 2 3
0l 104 — q(nt) - (02— 14
SUPM ) =6 10) ~ Tezed — a2 (2 - 1)
q(mt, f2) 01
= . :S rT]l’ Of ’
Qo) ~ SUm.i°R)
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Therefore, the triangle®lt; j© and m f,jO are congruent.
ii) The trianglegof2j° and pot1 j© have one common side
PojP. Using the Spread law and the congruences above,

S(pot1, Poj®) a(po, )

q(t1, j0)
_ S(pof2,poi®)d(po. %) 243
- a(fz, j9) N
= S(fgpo, fzjo) .

S(t1po,t1j°) =

Therefore, the trianglegy f2j° and pet1 j° are congruent.
U

Theorem 23 (Tangent base symmetry)Let ° = AP® be
the meet of the axis A and the tangefit 8nd hy the base
of the altitude from pto A Then i) g(bs, j°) = q(f2, ho)
and i) q(v1, j°) = g(v1,ho). The same statements are true
if we interchange the indicelsand2 by f; — f symmetry.

Proof. i) We calculate the quadrances

q(b, %) =q([a(a—1):0:0%(a+1)],[-t?:0:1])

2
:ﬁ:q([l—a:o:a(a+l)],[tZ:O:l])
Zq(fz,ho).

i) Similarly, we calculate the quadrances

t*a®

q(vl,jo):q([O:O::IJ,[—tZ:Ozl]):,[40(2 1

=q([0:0:1],[t?:0:1]) = q(va,ho). O

Figure 15: The | and hy points

Theorem 24 (Two chord midpoints) Let = p(t), o=
p(u) be two points on a hyperbolic parabofg, with Pg
the opposite point of gwith respect to the axis.ASuppose
that the chordso0p and gopo meet A at x and y respec-
tively. Then the verticesw, of & are the midpoints of
the sidexy.
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Proof. Supposepo = [t?:t: 1] andqgo = [u?:u:1]. The
line podo = (1: — (t+u) :tu) meetsthe axid=[0:1:0
atx=[—tu:0:1]. The chordpgqo = (1:t—u: —tu) in-
tersectA=(0:1:0 aty=tu:0:1]. Thus

2422
q(vl,x):q([O:O:]},[—tu:O:l]):%

=q([0:0:1,[tu:0: 1)) =q(vs,y)

which showsy; is a midpoint of the sid&y. The other mid-
point will be perpendicular te;, which must bes, without
calculation. O

A

Figure 16: Two chord midpoints

4.2 The optical property

Recall the famousptical propertyof a parabolaP in Eu-
clidean geometry: iP is a point lying on®, and light em-
anates from the focus heading towards the poift then

the light will be reflected to be parallel to the axis. An
analogous result in the hyperbolic case is the statement iv)
of the Congruent triangles theorem: that the tangent line

Py to a pointpg is a biline (bisector) of the verteR;R;.
So reflecting the focal lind; = f1pg in the tangenk? re-
sults in the other focal lin&,, which is perpendicular to
the directrixF,.

Here then is another analog of the optical property, dealing
with the relationship between two spreads formed by the
tangent linePy. Recall that the quadrance of the parabola
was defined agg, = q(f1, f2).

Theorem 25 (Parallel line spread relation) Let py be a
point on the hyperbolic parabol&,. If T is the spread be-
tween the tangent IineO@t po and the parallel line  to
the axis through @ andS is the common spread between
the tangent Pand the lines Rand R, then

~

(S-T)S
1-T

=1-0g,.

Proof. Using the Spread formula, we compute that

(a®—1) (A3 —A9)

~ o
S= S(Rl,P ) = Aobs
and

—(a2—1) (t%a2+1)?
T:S(LO,PO)_ (a )(t a”+ )

(t402 - l) A3\

Figure 17: The parallel line spread relation
Note that 1- g4, = q(by, f2) sinceb; and f; are perpen-

Recall from [16] that in Universal Hyperbolic Geometry dicular points. So in the limiting Euclidean case whgn
there is an important notion of parallelism, which is quite is very close tof,, it follows thatSis very close tor .
different from the usage in classical hyperbolic geometry.

We say rather generally that tparallel line P through a
point a to a line L is the line througha perpendicular to
the altitude fromato L.

Now recall that given a poirfip on the hyperbolic parabola
Py, the perpendicular to the axi& through pg is Jp =
(jo)" = apo = (1:0:~t?) with dual pointjo = PoA =
[1:0:t?a?]. Therefore, the parallel line to the axis
through the poinpg is

Lo=jopo= <—t302 tha?—1 Zt>.

4.3 Thespoints and S circles
Recall thats; = F;P° ands, = RPP.

Theorem 26 (The$; and S circles) The circle S1 with
center g passing through Jf also passes through,tand

is tangent at these points te Rnd R respectively. In par-
ticulari) q(s1,t1) = q(st, f2); i) R1 L Fy;iii)) R L T and
iv) S(sit1,t1f2) = S(s1 o, fot1) . The same statements are
true if we interchange the indicelsand 2, giving also a
circle S with center s.
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Proof. i) Calculate

a(si.tr) =q([2t (a—1):Az: 2ta(a+ 1)], ) %
[(0—1)Ar:4ta?:a(a+1)Aq))
(2= 1)n; .

- 16t20(3+A§(0(;—1) = Al f2). 3 g

b1 Uy

fa

ba
ii) The lineRy = f1po is clearly perpendicular to the direc-

0 q
trix F1 since it passes through the focfis= Fi-. " b fi [
iii) Sincety = RoF, S = fitp, the linesRy, F and$; are
concurrent atp, so the lineT, = t2L passes througip, 2
ands;. Thereforel, is perpendicular to the lings.
iv) Calculate Figure 19: A focal chordpoQp with polar point z on direc-
trix
S(tysy,tifo) =S((a(a+1):0:1—a), Theorem 27 (Focal tangents perpendicularity)If po =
<2ta2(a+1): —(az—l)Alz 2ta(0(—1)>) p(t) and g = p(u) are two points orqu thenpoo is a
) ) focal chord precisely when the respective tangeftarmi
_ (0‘ - 1) A3 QP are perpendicular; and precisely when the polar point
16208 — A? (02— 1) z=PYQC lies on a directrix.

= S(f2s1, fala)- = Proof. Supposep = [t?:t: 1] andgo = [u?: u: 1] lie on

Po. Thenpogo = (1: — (t+u) : tu) is a focal line precisely
when it passes through eithérof f,, in other words pre-

cisely when
(1:—(t+u):twfa+1:0:a(a—1)"
=d+1+tua(a—1)=0 or

(1:—(t+u:twl-a:0:a(a+1)"
=—a+1+tua(a+1)=0.

On the other hand the tanger® = (1:—2t:t?) and
Q%= (1:—2u: u?) are perpendicular precisely when

0=(1:-2t:t?)D(1: —2u:u2>T
= o? — dtua® — t?u?o? (0?2 - 1) — 1
Figure 18: The 51 and.$; circles = (a+1+tua(a—1))(a—1—tua(a+1)).

Thus the two conditions are equivalent.

In particular, property iii) provides us with an important  ag in the Tangent meets theorem, the tangeé#tsand
alternate construction of the tangé®ftto the parabola?, Q° meet atz= [2tu:t+u:2]. This point lies onFy =

at po : namely we construct the altitude to po f2 through (@(a+1):0:1—a) or K, = (a(a—1):0:a+1) pre-
f,, and obtains; = F1T,, giving P® = pos; (or similarly cisely when

constructpes,). In Figure 18 we see the circlgg and.S,.

Note thats, looks like a hyperbola tangent to the null cir- [2tu:t+u:2](a(a+1):0:1— o)’

cle, in fact it is tangent at exactly the points wh&eneets —2 (—a T tuo - tuo® -+ 1) -0 or

the null circleC — see the discussion in [18]. -
[2tu:t+u:2](a(a—1):0:0+1)
4.4 Focal chords and conjugates =2 (a —tua +tuo® + 1) =0.

A chordpoQp is afocal chord precisely wherpogp passes  Since we work over a field not of characteristic two, the
through a focus. Such chords play an important role both conditions are equivalent to the previous ones. O
in the Euclidean and the hyperbolic theory.

32



KoG-17-2013

A. Alkhaldi, N. J. Wildberger: The Parabola in Universal Hyperbolic Geometry |

Given a pointpg on the parabol&,, we define theonju-
gate pointsny, n2 as the second meets of the focal lifgs
andRy with the parabol&@, respectively. Since one meetis
known, solving the quadratic equations is straightforward
and yields

n = [(a +1)%:ta (1-a?) :t?0® (o — 1)2}

N = [(a —1)%:ta(0®—1) :t%a®(a+ 1)2} : (14)

Figure 20: Focal conjugates nand np
The dual lines are theonjugate lines;

— <a(a+1)2 (a2 1) —t2a(a— 1)2>
<—a(a ~1)%:t(a?-1)%: tza(a+1)2>.

Theorem 28 (Conjugate points parameter)Let p =
p(t) be a point on the parabol&y, then the point [u)

is the conjugate pointnof py with respect to the focus
f1 precisely when u= —#*_11), while p(u) is the conju-
gate point n of py with respect to the focus fprecisely
when u= #‘jl)

Proof. Let po= [t?:t:1] andp(u) = [u?:u:1] lie on
Po. Then, the lingpogo = (1 : — (t+u) : tu) is a focal line
with respect to the focufy when it passes through the fo-
cusf; and then we have

[1:—(t+u):tu[a+1:0:a(a—1)]" =0  sothat

o —tuo +tuo®+1=0.

This gives the condition = — #*_11)
direction is straightforward.

When the lingpogo = (1 : — (t +u) : tu) is a focal line with
respect to the focu§ , then the focal line passes through

the focusf, and we have

Similarly, the other

[1:—(t+u):tuy[l—a:0:a(a+1)]"=0  sothat

—a+tuo+tua’+1=0.

This gives the condition = 541

direction is straightforward.

. Similarly, the other
O

4.5 Quadrance cross ratios

Theorem 29 (Quadrance cross ratio)Suppose that
a,b,c,d are a harmonic range of points on a line L in
UHG. Then

a@c) _ q(b,c)
q(ad) dq(b,d)

Proof. We know from projective geometry that a harmonic
range of points, b, c,d in the projective space can be re-
alized agv], [u], [av+ Bu], [av — Bu] for two vectorss and

u and two scalara andf3. Then using the short hand nota-
tionv? = v-vanduv= u-v, we calculate that

2
a([v], [av+Bu))=1— V-v) (E\év(i\ét)[-ﬂg)w Bu))
V(0224 2aB )+ BAD) - (v’ +Buv)
- V2 (02v2 + 203 (uv) + B?u?)
B2 (12— ()
- V2 (a?v2 420 (uv) + B2u?)

and similarly
(u- (av+ Bu))®
u-u) ((av+pu)- (av+ Bu))

W02 4-2aB uy+BA)—(a (U\M—Buz)2
u2 (a2v2 + 2aB (uv) + B2u?)

- a? (uzv2 - (uv)z)

U2 (02v2+ 20B (uv) + B2u?)’

Q([U], [aV'f' BU]): 1- (

It follows that
g(ac) _ q(v,[av+pu) B
a(b,c)  q(ul,fav+Bu) o2

But this quantity is then unchanged if we replacedith
—a, or B with —f3. O

Theorem 30 (Conjugate cross ratios)Let p be a point

on the parabola®y, with n; and rp the focal conjugates
and u and 1 the meets of Rand R with the directrices

F1 and F, respectively. Then

q(Po, f1) _ a(po,U2) A(Po, f2) _ a(Ppo.u1)
q(fi,n)  q(uz,ny) q(fz,nz)  q(uz,n)
Proof. From the Focus directrix polarity theorem, we

know thatf, andF; are a pole-polar pair with respect to
the parabola?. Hencef1, uz; po,n1 is @ harmonic range.
From the previous theorem, that implies that

a(po; f1) _ q(po,u2)
a(fi,n)  quz,ng)’

The other relation follows similarly sincé&, u1; po,n2 is
also a harmonic range of points. O
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4.6 Spreads related to chords of a parabola

Theorem 31 (Polar point spreads)If the tangents P
and @ at the points p= p(t) and ¢ = p(u) lying on the
parabola?, meet at the polar point zhen S f1po, f1z) =
S( f1Qo, flz) and afz Po, fzz) = S(szo, fzz).

Proof. Suppose thapy = [t?:t:1] andgo = [u?:u: 1]
are on the parabol®. Thenz= [2tu:t+u:2] and we
calculate

at—u)?(a®-1)
(a+a2t2 —at2+1) (o 4 02u2 — au2 4-1)
at—u)?(a®-1)

= A3 (t)A3 (U) = S(f1QO7 le)

S( f1 Po, fj_Z) =

and

a(a?—1) (t—u)?
(a—u202—u2a—1)(—a+t202+t2a+1)
~—a(a?-1) (t—u)?
o As(t) A (U)

S(f2po, f22) =

= S(f20q0, f22).

Figure 21: The polar point z of the chorfipOp

Theorem 32 (Chord directrix meets) Let py = p(t) and

go = p(u) be two points on a paraboldy. Let z be the
polar point of the chordpop, and x = F1(pogo) and

X2 = F2(podo). Theni) fiz L fixg, ii) foz L foxq and iii)

S(x1z,zfp) = S(xpz,211).

Proof. We suppose as usual thap = [t?>:t:1] and
go= [u?:u:1]. Then
i) We compute that
X2 = F2(podo)
=(0%(a-1):0:a(l+a)) x (1:—(t+u):tu)
= [(a+1)(t+u): a+tuo—tuo®+1:—a (a—1)(t+u)].

34

Also
fiz=(—o(o—1)(t+Vv):2(—a—tva+tva®—1)

Sa+1)(t+Vv))

fixo = (o (0 —1) (—a — tva + tva®—1) : 20 (a®—1) (t + V)
(a+1) (o +tva —tva?+1) )

and so we may verify that

0= (-a(a—1)(t+v):2(—a—tvo+tva®—1)

(a+1)(t+V))Dx
{a(a—1)(—a—tva+tvo®—1) : 20 (a® — 1) (t+V)
H(a+1) (a+tva—tva?+ 1))

Thus

S(f1z, f1x2) = 1.

i) Similarly

X1 = F1(pogo) = (0 (a+1):0: 1—a) x (1: —(t+u): tu)

= [(0—1) (t+u): a+tuo +tuo®~1:a (o + 1) (t+ u)]
and the lines
foz=( —o(o+1)(t+u):2(a+tua+tua®—1)

C—(a—1)(t+u))

foxg = (@ (a+1)(a +tua +tua®~1) : —2a (a®~1) (t + u)
S(a—1) (o +tua +tua®—1) )

are perpendicular, so that

S(faz, fox1) = 1.

iif) Another calculation shows that

1 (@2-1) ((2tu)2—(t+u)2)a2+ (t+u’—4
S(xuzzh)=-
bazzk) 4 (t202) o4+ ((t ) (t2u2 4 1)) a?+1

=S(xpz,zf1). O

Figure 22: Chord directrix meets xand %

In Figure 22 we see the two triangldszx, and fozxy,
which are both right triangles sharing a common spread.
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Theorem 33 (Tangent directrix meets)|f the two tan-
gents P and @ to a parabola? at p = p(t) and
go = p(u) respectively meet the directrix; Fat s and
s; respectively, and meet,Fat $ and $ respectively,
then Sflpo, f1CIo) = S( f15, f1§2) and szpo, f2Q0) =
S( f2817 f2§l)

Proof. Suppose thapy = [t?:t:1] andgo = [u?:u: 1]

are on the parabol&. Then

4o (02 —1) (t—u)®(a + a?tu — atu+ 1)2
B8

S(f1po, f100) =
= S(f;LSQ, f1§z) .
Also, we have that

S(f2po, f200)
_ —da(a?—1) (t—u)® (—o+ tuat + tua®+ 1)2
- AREA()

= S(fle, fzg_]_) .

‘PO

Figure 23: Tangent directrix meetg and $

Recall that in universal hyperbolic geometry, a triangle
may have four circumcircles.

Theorem 34 (Two tangents circumcircle) Suppose that
the two points p= p(t) and @ = p(u) on a parabola
Py have respective altitude base pointstd and ,t, on

F1,F respectively, and that their tangents meet at the po-

lar point z. Then z is a circumcenter of both the triangles
t1 fot] andtx f1t). In particular q(t1,z) = q(t1,2) =q(z f2)
and q(t2,2) =q(t5,2) = q(z f1).

Proof. Suppose thapy = [t?:t:1] andgo = [u?:u: 1]

are on the parabol&, then,

qd(z,f2) =q([2tu:t+u:2,[1—a:0:a(a+1)])
_ Ag (1) Ag(u)
a ((4t2u2— (t+ u)Z) a2+ (t+u)?— 4)

=q(zt1) =q(zty).

Hencez is a circumcenter of the triangtefat;. Similarly,
zis the circumcenter of the trianglefit) since
qd(z, f1)=q([2tu:t4+u:2],ja+1:0:a(a—1)])
o Az (t) Az (u)
a ((4t2u2 —(t+ u)2) a2+ (t+u)? — 4)
=q(ztz) =z 1)

Figure 24: Two points and polar circles

In Figure 24 we see the polar point p§p; together with
the twopolar circles centered at through the foci.

Corollary 2 Ifthetangentsat@=p(t)and g = p(u)ﬂ]
P meet at z then the line# is a midline of the sidat;
and similarly £z is a midline of the Sid’Q_té.

Proof. This follows immediately from the previous theo-

rem, sincef;z is the altitude frone to the directrixF;, so
it bisects the chortit;. O

Theorem 35 (Opposite triangle spreads)f the tangents
at pp = p(t) and @ = p(u) on B meet at z, then
S(zp,zh) = S(zp,zf;) and Sz, zf) = S(zep, zf1).

Proof. Using the Spread formula, we obtain

(02-1) (4202~ (t+u)? )02+ (t+u)*~4)

S(zw,zf) = VOIS0
=§(z00,2h)
and
a?—1) (4202 — (t+u)? ) o+ (t+u)*—4
S(Zp)aZfl): ( ) (( ) )

405 (W) Da (1)

=S(z00,2 ). O
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on the evoluteE. The figure shows also that for points
above the evolute, there are three normals that meet there;
we exhibit also the other two points markEdvhose nor-
mals also pass through Below the evolute only one nor-
mal passes through any fixed point.

For a pointpp on the hyperbolic parabol&, the altitude

line P to the tangenP? throughpy is called thenormal

line at po.
. % Since the dual oP? is the twin pointp®, we see that
Q(
P=pop’= [t?:t:1] x [@®—1:2a?: —t?0® (0 1)]
Figure 25: Opposite triangle spreads — < _tg? (t2c12 24 2) : (02 _ 1) (t4a2 + 1)

't (2t%a® —a?+1)). (15)
5 Normals to the parabola?y
By symmetry, this means th&tis both the normal line to

In the Euclidean .cas.e, it |§ well known that the evolute of the parabola®, at po as well as the normal line to the twin
the parabola, which is defined as the locus of the center Ofparabolaa’o at p°

curvature of the curve—namely the meet of .adjgcenf[ N0 The meet o and the axish is the point
mals, as Huygens or Newton would have said—semi-
cubical parabola For the curvey = X2, shown in Figure = pa

26, the evolute has equation
q = (—to?(t202— 12+ 2) : (02— 1) (t%a? + 1)

( _})325)(2 (2% —0?+1))x (0:1:0)

2 16 = [t(2t%0® —o®+1):0:ta? (t?0? —t? 4 2)]
This formula suggests that there is no Euclidean ruler and = [2t?0% —a®+1:0:0? (t?a® —t*+2)]
compass construction for the center of curvatty®f the _ _ _ .
parabola for a general poif on it. We will see thatin ~ provided that 7 0. Since the norma? of is perpendicu-
the hyperbolic case, the situation is in some ways simpler, lar to the tangen®®, and since™ is a biline of the vertex

and indeed we will show how to give a straightedge con- RiRz, the normaP is the other biline for the verteiiR,.
struction for the center of curvature! In fact we may calculate that

t2(0(2+1)2
Ri,P)=SPR)=———.
5.1 Conjugate normals and conics

Recall that the conjugate poims, ny of pg are the second
meets of the focal lineRy = f1pg andR, = fopg with the
parabola?, respectively. They are given in (14). The nor-
mal lines to, at the conjugate points; andn, can then
be computed using the formula (15):

P = <t0( (a—1) (2a2 (00— 1)t + (o + 1)3)
co? (a— 1)+ (a+1)*
- —ta(o+1) (2(a +1)— (o - 1)3t2) >
P, = <—ta (a+1) (20(2(0(+ 12+ (o — 1)3)

co? (a4 1)+ (a—1)*

Figure 26: Evolute of a Euclidean parabola

In Figure 26 we see a poift on the Euclidean parabola,

with its tangentp®, obtained by finding the mee$ of ‘ta(a—1) (2(0( —-1)—(a+ 1)3t2) >

the directrixf with the altitude to the focal line = FPy

through the focu§. The center of curvature is the poidd We will call these theconjugate normal linesof po.
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Theorem 36 (Conjugate normal conics)There are two and similarly the conjugate norma#s, P, at ni,n, meet
conics# and #, with the following properties. Lethbe Py respectively also at

the meet of the normal P and the conjugate normadiRa 2

point p on %. Then h lies on#4, which passes through nj = [tzm2 ((a — 132 - 2(a+ 1))

fo and is tangent to Bthere. Similarly if h is the meet of

P and B at po, then b lies on#5, which passes through f Ttal (2(0( + 1)—(0‘—1)3'[2) (20‘2(0‘—1)'[2+ (a+ 1)3)
and is tangent to Bthere. Furthermore we have collinear- 5 ) 32
ities [[f152hz]] as well as{[fs1hy]] . In addition #4 passes 1 (20‘ (a-Dt°+(a+1) ) }

through the points glanddo. 2
M, = [tzaz ((a 11324 2(1— a))

Proof. The conjugate normd will meet the normaP at : (20(2(0(+1)t2+(0(—1)3) (a (a+1)3t3—2c1 (@—1) t)

hl = PP]_:

: (2a2(a+ 12+ (o — 1)3)2} .
[—az (a—1)3t*+40? (a+1)t?— (a—1)(a+1): ta <a2+1>A1

Lo (az(a+1) (a—1)2t4+4a2(a—1)t2+(a+1)3)]

‘‘‘‘ € d2 l"_"_,- nl«“’
A computation shows this point always lies on the conic c (L

4 with equation Ry N\~
' | i nif b 7\ 2YPAN2 b2 o —Ng;
1 [ iAW RN P

i

o (0 — 1) (14 4a +a?) X
2 2
+2a (1-2a —0) (1420 — o) xz 0 X\
+320%? + (0® — 1) (1—4a +a?) Z =0. P ,/ e > %

The conjugate normdb will meet the normaP at

Figure 27: Conjugate normal meets; tand hp and conics

h, =PR, = Theorem 37 (Normal conjugate colliearities)Let g, n}
[02 (a+ 1)3t4— 402 (@ — 1)t2 1 (a+ 1) (a — 1)2 and r}, be the second meets_ of the normals and conjugate
normals PP, and B of pg with the parabola?, respec-
‘ta (0 +1) Ay tively, and {,t; the altitude base points ofgp Then we

have collinearitieg|pyn;t1]] and[[pynbt2]].
:a(az(a—l)(a+1)2t4+4cx2(a +1)t2+(a—1)3)]. $lPonta]] and{[ponztz]]

Proof. Since the forms of all the points involved are
known, it is straightforward (with a computer package)
to verify that the corresponding determinants for both
a2 (az _ 1) (1 Ao+ GZ) N collinearities do evaluate identically to O. O

This point always lies on the coni, with equation

—2a(2a+0®~1) (~2a +a®~1)xz These collinearities are illustrated in Figure 28.
—320%? + (a? — 1) (1+4a +0o%) Z =0.

The collinearity[[f1s1hy]] is established by checking that
the determinant formed by the respective vectors is indeed
0 (it is!), and similarly for the collinearity[fosphy]]. We

can also check (with a computer package) that both of the
pointsdy anddyp identically satisfy the equation ¢f;. [

The normaP at pg meets the parabofg again at a second
point

ph= [ (2202 —a?+1)°: ta? (12217 2)(2%a2—a?+ 1)

20 (1202 — 12+ 2)%] Figure 28: Normal conjugate collinearities
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5.2 Four points with concurrent normals The question of the existence of four points on the parabola
Py with a common normal point is closely related to an in-
teresting conic associated to four points on the parabola;
namely the conic? through those four points and the axis
point a, which has independent interest due to its form.
We call this conic4 (p1, p2, p3, p4) the four-point conic
throughps, p2, ps and ps.

In the Euclidean case, finding the three poiRten the
parabola whose normals pass through a given pbint
above the evolute is not straightforward [8]. We will show
that in the hyperbolic case there is an interesting conic,
related to the elementary symmetric functions of four vari-
ablesty, ts,t3,14, that allows us to findour such points.

Theorem 38 (Four parabola normals) If | is a point in 1 neorem 40 (Four point conic) For any four points p=
the hyperbolic plane, then there are at most four points p P(t);P2=p(u),ps = p(v) and py = p(w) lying on, the
on the parabolaf, whose normals pass through . four-point conic4 (py, P2, p3, P4) has equation

Proof. We know that the normal tpo = [t?:t: 1] isthe 0 =x2—(t+ U+ V+W)Xy+(tu+tv+tw-+ v+ uw-+ vw)xz
line — (tuv+ tuw+ tvw+ uvw) yz-+ tuvw?Z. (17)
P=(ta?(—t2a®+t>—2): (a®—1) (t%a’+1
< ( 5 +2 ) ( )( ) Proof. We use a standard technique for computing a conic
‘t(2%af—at+1)). through five given points: by taking a combination of the
degenerate line products formed by pairs of four points

If P passes through a poiht= [X : Yo : z0], thenIP = 0, P, P2, ps andpa. Now

which after rearranging is the equation
ging q pipz = (1:—(t4u):tu) p3pa = (1:—(V+w):vw)

o? (o — 1) yot* + a? (1~ 0%) o+ 220) t° Pips=(1:=(t+V):tV)  popa=(1:—(t+w):tw)
+((1-a?)z0—2a%0) t + (0> — 1) yo = 0. (16) - _
so the general conic in the pencil througih p2, ps andpa,
This is a polynomial of degree four in so it has at most  has the form
four solutions. O
0=p(x.y,2) = (X— (t+u)y+tuz) (x— (V+w)y+vwz

Theorem 39 (Quadratric normal meets) Suppose = -

p(t) and g = p(u) are two points on the parabola, whose FAX—(t+V)y+tvz) (Xx— (U+w)y+uwz).
respective normals P and Q meet at a point |, and sup- )

posea?+ 1+ 0. Then there ar®,1 or 2 other points on  NOW since als(0,1,0) = 0, we can solve foh to get
the parabola whose normals pass through | precisely when

0= (t2u?a?+ 1)2 —4tuo®(t+u)?is nota square, is zero, A = —w.

or is a non-zero square respectively. (t+v) (u+w)

Proof. The meet of the two normals is Substituting back and simplifying, we find that the equa-
| =PQ= tion of the required conic is (17). O

[(az—l) ((tu (22 —tu—t2—1?))a*+ ((tu—2) (tu+t2 + u?) +1) o®— 1)
C—tuo® (a2 + 1)% (t+ )
a?(a?-1) (Budat+ (2u-1) (tu+ 2+ u?) —t3u) o+ (t2+tu+u2—2))]

and we need to check when a third paigts p(v) on
has a normaR also passing through This is equivalent
to IR = 0 which yields, after remarkable simplification,

—o2(a?-1) (a2+ 1) (u—v) (t—-v)
- (t+u+ v+ iAo’ + tPuva? + tu?va?) = 0.

Since a # 0,+1 and u,t,v are disjoint, this condi-
tion reduces to the quadratic equatituo?® (t + u)v? +
(t?u?02 4+ 1) v+ (t+u) = 0 in v with discriminant

Figure 29: Four points p with normals through | and asso-

(42,22 2 2 2
0= (tuo”+1)" —4tua®(t+u)”. - ciated conic4
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There is a clear similarity between the form of this conic
and the familiar identity

(x—t1) (X—12) (x—13) (Xx—tg) =x* — (t1 + 2+ t3+ t2) X
+ (tatp + tots + taty + totz + tots + tats) X
— (tatots + tatots + tatsta + totsts) X+ tatotsts
relating the coefficients of a degree four polynomial and

the elementary symmetric functions of its zeros. This may

be explained by noting that ip = [x:y:Z = [t?:t: 1]
is a point on the parabola, then the quantiiéxy, xz yz
andZz’ are respectively exactly, t3,t%,t and 1 while the
condition that the conic passes throwgknsures that the
coefficient ofy? is necessarily 0.

5.3 The conic4, and finding normals

Theorem 41 (Four normal conic) Suppose that the nor-
mal lines at four points p p2, p3, p4 lying on % are con-
current at a point I= [Xo, Yo, 2] not lying on the axis A
Then the conicg with equation
o (0% — 1) yox? + 0 (Xo + 220 — Xo0%) Xy

+ (20 — 200% — 2x00%) yz+ (0% — 1) yoZ = 0 (18)
passes through the six pointg, p2, ps, ps,a and |, so in
particular 2 = A (py, P2, Ps, P4)-

Proof. The condition (16) on for p= [t?:t: 1] on % to
have a normal line passing throubke [Xo, Yo, 2] may be
rewritten, sincey # 0, as

2 2 2 2
4, Co(-0%)+22) 5 (@(1-a%)-2x0%) =1 _
Yoy | ey e

If we have four distinct solutiorntsu, v, w of this equation,
then
o? (%o (1 - 02) + 22)

t+u+v+w=—
+Uu-+Vv+ azyo(az—l)

tu+tv+tw+uv+uw+vw=0

20 (1—0?) — 2x0?
02yp (a2 —1)

tuv+tuw-+tvw+ uvw= —

1
tuvw= o2

From the previous theorem, the conic passing through the

five pointspy = p(t),p2 = p(u),p3 = p(v), ps = p(W)

andathen has the form

> 02 (Xo+220—%o0?)
az(a2—1)yo

(20—2%002—200?)
az(a?-1)yo

1
yz+¥22:0

which we can rewrite as the conf; (18). But now we can
check that alsb lies on this conic, since identically

a? (a? — 1) yox§ + o (xo (1— 0?) + 220) Xayo

+ (20 (1-0%) — 200%) Yozo + (0 — 1) yoz5 =0. [

Theorem 42 (Conic construction of common normals)
Let | be a point of the hyperbolic plane with the property
that the dual line L of | meet$y at two points x and y.
Then the meet z of the tangent linesipat x and y, the
meet X of the tangent line at x and the dual line of x, and
the meet yof the tangent line at y and the dual line of y,
all line on the conicj.

Proof. Suppose that the dual lineof | meets?y at two
pointsx = [t?:t:1] andy = [u?: u: 1]. Then the meets
of the tangent lines ig= [2tu:t+u: 2| from the Tangent
meets theorem. Alsb = (1: —(t+u) : tu) and

| =[0?—1:0%(t+u): —a?tu(a®-1)].

In this case the equation (18) for the corAc simplifies,
after some cancellation, to

o (t+u)x? + (1— 2tua® — a?) xy
+ (tuo® —tu—2)yz+ (t+u)Z = 0. (19)
The dual line ofx meets the tangent line atat
X = [t(o®?—t?+2) : ot +1:t (2022 — a® + 1)]
and the dual line of meets the tangent line gt

y

We check that both of these points identically satisfy the
equation (19).

[u(o?u? —u?+2) 1 a?u® +1:u(20%u? — o+ 1)] .

Figure 30: Construction of points p or? with normals
through n

This also provides us with an elegant method to find all
normals through a given poiht Firstly, find the dual line

L of the pointl and then find the meetsy of this lineL
with the parabolafy. Construct the tangeni;, P, to %y
atx andy and find their meet. Construct the dual lines
X andY of x andy, then find the meet of the tangentat
and the dual line ok, that isX' = PX and the meet of the
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tangent ay and the dual line of;, that isy’ = R)Y. Accord-

ing to the above theorem, the five poiht%',y’,z a lie on

a conicA; which may meet the parabaf in at most four
points which have the property that their normals meet at
[. We see that the number of normals passing thrdugh
determined by the meet of the corfi¢ with the parabola
. So if we can find the meets of these two conics, we
have the normals which pass through

This construction shows that some aspects of hyperbolic

geometry are surprisingly more simple than in Euclidean
geometry. In the latter, finding normals to points on a

parabola from a particular point is quite cumbersome, as

shown in [8].

Furthermore, the four normals drawn from a particular
points are also the normals to four points on the twin
parabolaP®. These points are the dual points of the tan-
gents to four points on the original parabdig. This ob-
servation is the result of duality between lines and points.

5.4 Normal conjugate points

If po is a point on?, with tangent lineP® and normal line
P, then the other meet ¢t with the parabola gives a point
Py, which we call thenormal conjugate pointof po. Then
the tangent line? to p meets withP° at the point

ko = POPO
= <t204(t2a2—t2+2)2: 2to? (t20® —t%+2) (2?0~ a2+ 1)

: (220 —o® + 1)2> x (1:-2t:t%)
= [-2t2t%0®—o®+1): (0®— 1) (t*o®+1): 2ta? (2 —t2+2)).

Figure 31 shows theormal conjugate curve %y : the lo-

cus ofky aspp moves. This a higher degree curve which
passes through as well asdy anddy, and is tangent ta?

at those latter two points. It seems an interesting future di-
rection to investigate more fully such associated algebraic
curves connected witt#y.

Figure 31: The normal conjugate coni&p

40

5.5 The evolute and centers of curvature

Recall that theevolute of a curve is the envelope of the
normals to that curve, or equivalently the locus of the cen-
ters of curvature. Following the technique described in [4],
here is a pleasant construction of the center of curvayire
to the hyperbolic parabol® at the pointpo.

N

(
=K
A\‘\
A
X

<

\\,
A

4

Z’A

=

2
v

[~ »n N2\ T o
m_Z— v > g N
‘ \
B
- ‘N Q\ \
PO .L

Figure 32: Evolute of a parabola

Theorem 43 (Center of curvature construction) Let P
be the normal at gpto the parabola®y, and construct the
altitude line Q to P through B= AP. Suppose that the meets
of Q with the focal lines Rand R are respectively xand
x2. Then the meet of the perpendicular line tptRrough

x1 and the perpendicular line toRhrough % is the re-
quired center of curvaturepdo %y at the point p.

Proof. Let po= [t?:t:1] andn= [2t?0%> —a?+1:0:
o2 (t?a?—t2+2) ], then the perpendicular tB through
| =nis
Q= pn=[o? (to?+1) (Pa? - 2+ 2)
't (20 — t?0 — 2t%0% + t?0® + a? - 1)
- (=20 + t?0 — 2t%0% — t?0® + a? - 1)
D (tfa?+ 1) (—2t%a +a? - 1) }

This line will meet the lindR; at

X1 :{—2a4t6+ (a5+3a4—3az—a)t4
+ (203 — o* + 40% + 20 — 1)t? + (1 - a?)
‘ta (0 + 1) (t*o® + 1)
ra(—o®(o®—1)t°+ o (20 — 4a?+ 203 + o + 1)t
—(a®~1) (~30+a?+ 1)t2+2c1)}
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and the lineR, at

Xo = {(20(4) to+ (05— 30 + 302~ a) tt
+ (0% + 203~ 40® + 20 + 1)t? + (0 — 1)
‘ta (0 +1) (t*a® + 1)
ca(a® (a? 1)t + (2a4—05+40(3+20(2—a)t4
+ (3a—303—a4+1)t2—2a)]
The perpendicular line t&; throughx; is X; = x1r1 and

the perpendicular line tB, throughx, is Xo = Xor2 which
meet at

Co=X1Xp =
[ (a®—1) (20(4t6 +30% (1—0?)t* - 60%t% + (a? - 1))
- —26%2 (a2 4 1)°

sa?(a?-1) (02 (0?~1)t° + 60%t* + 3 (1-a?) t2—2)]

To evaluate the center of curvature, we note that adjacent

normals, say ap(t) andp(r), meet at

(

f(tr)=
K

tr
o? — 1) (—2r¥%3a® + rita® - r’ta? + r’t?a® — ri%a?
+2r%0® + rt3o® — rt3a® + 2rta® + 2t%0% — o® + 1)
srta? (r+t) (o + 1)2
—a? (a? - 1) (r*t®a’ - r*®a® + 2r3ta? + 2r%t%0?

—r2a? 41?2130 - rto® 1t — t?0® +t2 - 2)}

where we have removed a common factor eft. Now let
r =t to find thatf (t,t) = co. O

5.6 Formula for the evolute

Can we get a formula for the evolute? Working with affine
coordinates (setting= 1), we need eliminate from the
equations

o (2ot —3ttat + 3ta® — 6t°0® - o® — 1)
02 (ta% —tba2 4 6t402 — 3t2a2 + 32— 2)
~23 (a2 +1)°
a?—1) (tba# — a2 + 6t402 — 3t202 + 3t2 - 2)

=1

Figure 33:Normals to a parabola

We could use a Grobner basis to calculate this, but the
polynomials are small enough to do it by hand with classi-
cal elimination. We get, after some calculation, thaind

y satisfy the affine equation

0=h(xy) = 3208 (a? — 1)° X6 — 25602 (a2 — 1)°yP
+3a* (8 + 6a? — 8® + 30* + 3) (—8a -+ 6a? + 8a® + 30* 4 3)

(o —1)? (a4 1)°x*
+384a* (0271)5X2y4+48(16 (20 +a?~1) (20 +a?—1) ((J(Zfl)zx5
—1920% (204 a? — 1) (204 a® — 1) (a® — 1) 32
+1922 (—20+ a2 — 1) (20+a2— 1) (a2 — 1) xy*
+24a* (a?-1) (—2a — 62+ 203+ o*+ 1) (20 — 60° — 203+ a*+ 1) x*
38402 (a2 —1)°y*
+ 602 (19602 - 3780 + 1960° + 0 + 1) (a? - 1) x4y
+40? (20 +a?~1) (~2a +a?~1)( 36>+ 86a* — 36a°+a®+ 1)
+19202 (—20+ a2~ 1) (20 + a2 — 1) (a®— 1)°xy?
—240%(0®—1) (20 — 60° — 203+ a4 1) (— 20 — 6a®+ 203+ &+ 1)
+3(—8a + 60+ 8%+ 30*+ 3) (8a + 602 — 803+ 3a*+ 3) (02— 1) °y?
+4802% (~200+ 0%~ 1) (2a + 02— 1) (a? — 1)°x— 3202 (02— 1)°.
So the evolute is a six degree curve, with coefficients that
depend in a pleasant way @n Note that all the coeffi-

cients are divisible bya® — 1, with the exception of the
coefficient ofx®.
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Conchoids on the Sphere
ABSTRACT

The construction of planar conchoids can be carried over
to the Euclidean unit sphere. We study the case of con-
choids of (spherical) lines and circles. Some elementary
constructions of tangents and osculating circles are stil
valid on the sphere. Further, we aim at the illustration
and a precise description of the algebraic properties of the
principal views of spherical conchoids, i.e., the conchoid’s
images under orthogonal projections onto their symmetry
planes.

Key words: spherical curves, conchoids, algebraic curves,
tangent, osculating circle, singularities, orthogonal projec-

Konhoide na sferi
SAZETAK

Konstrukcija ravninskih konhoida moZe se prenijeti na euk-
lidsku jediniénu sferu. Promatramo slu¢aj konhoida gener-
iranih sfernim pravacima i kruZnicama. Neke elementarne
konstrukcije tangenata i kruZnica zakrivljenosti vrijede i
za sferne konhoide. Nadalje, na$ je cilj ilustracija i pre-
cizan opis algebarskih svojstava glavnih pogleda sfernih
konhoida, tj. slika konhoida pri ortogonalnom projiciranju
na njihove ravnine simetrije.

Kljuéne rije€i: krivulje na sferi, konhoide, algebarske
krivulje, tangenta, kruznica zakrivljenosti, singulariteti, or-
togonalna projekcija

tion

MSC2010: 51N20, 14H99, 70B99

1 Introduction

The construction of conchoids goes back to the early Greek
mathematicians [5, 13]. Assume we are given a pbint
calledfocusand a lind calleddirectrix one can ask for the
setc of all points in the Euclidean plane at fixed distadce
from| measured on all lines throudh cf. Figure 1. /

The setc turns out to be an algebraic curve of degree 4,
namely theconchoidof the linel with respect td- at dis-
tanced € R. The conchoid can be described by the equa-  Figure 1: The construction of the conchoid ¢ of a line | in

tion the plane.
(X —d?)(f —=x)2+x¥* =0

provided that a Cartesian coordinate system is chosen as
depicted in Figure 1 witlk = (f,0), f e Randl : x=0.
The conchoid has two branches, one corresponding to the / ‘ } © \ ‘

distance+d, while the other corresponds to the distance l

—d. The algebraic variety contains both branches.

Figure 2: The planar conchoid of a line has an ordinary
double pointifid| > | f| (left), a cusp ifid| = | |
(in the middle), and an isolated double point if
|d| < || (right).

The conchoid has an ordinary double point Bt= (f,0)
if |d| > |f| (or an isolated double pointjél| < |f]). In the
case ofild| = |f|, F is a cusp of the first kind,e., with the
local expansior(u? + o(u®),u® + o(u%)), see [2, 3]. The
cusped curve can also be seen in Figure 2.
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Independent of the choice dfand f the curvec consid- For some image curves the degree reduces to 4. Further,
ered as a curve in the projective plane (cf. Figure 3) has awe describe the singularities showing up on the principal
tacnode at the ideal point of theaxis. There, two linear  views of the spherical conchoids.
branches with the same tangent emanate. Therefore, the
conchoid is of genus 0, and thus, it is a rational curve. ) )

2 Conchoidsof aline

AssumeX is the Euclidean unit sphere with the equation
Sty Z=1 1)

and let furthet be aline onz, i.e., a greatcircle ok. With-
out loss of generality, we can asssume thatthe equator
of Z in the planez= 0 (see Figure 4). Thus, a parametriza-
tion of | reads

Fﬂm\

. . .. . . L(}\) = (C)\,S)\,O) with A € [Oa 2T[[ (2)
Figure 3: The singularities of the conchoid considered as
a curve in the projective plane. where we have used the abbreviatians:= cos\ and
S, ;= SinA.

The nameconchoidis due to the fact that its shape some-
how reminds of a conch. The conchoid of a line (the direc-
trix | is a line) is frequently called conchoid of Nikomedes,
see [4, 5, 13]. The liné can be replaced by an arbitrary g _ (Co,0, %) 3)
curve.

In former years, mathematicians developed elementary(With Cy:= cospands, := sing) since it means no restric-
constructions of points, tangents, and osculating cifdes ~ tion to assume that the greatcircle orthogonal torough
some kinds of conchoids such as those of lines and circlesF lies in the plang/ = 0.

The kinematic point of view allows us to see the conchoids The points on the spherical conchaidf | with respect to
as traces of moving particles, and thus, further construc-g 4t distances < 10, %[ are found via the analogous con-
tions of tangents and osculating circles can be deducedgi,ction on the sphere: Choose a pairun the equatot,

see for example [6, 14]. join it with F by a greatcircle, and determine the poiRts
Inthe last few years conchoids became popular in CAGD, at spherical distana®from L.

see[1, 8,9, 10, 11]. This is mainly due to the fact that un-
der certain circumstances conchoids can be parametrized
by means of rational functions which is mainly the content
of [8, 9]. Thus, a huge class of possibly new surfaces is
available for CAGD. The conchoids of spheres and ruled
surfaces are not spheres or ruled surfaces anymore, except
in some special cases. In order to overcome this flaw, an
intrinsic construction of conchoids for some geometries is
presented in [7].

It is somehow surprising that conchoids on the sphere have
not attracted the researchers’ interest. Many constmstio
that are valid in the Euclidean plane can easily be adapted
for the Euclidean unit sphere. In this article, we shall
demonstrate this at hand of the spherical analoga to con-
choids of lines and circles. The spherical conchoids of
lines are conchoids of greatcircles on the sphere. How-
ever, the spherical conchoids of circles are stil conchoids

of circles but on the sphere. Figure 4: Construction of a conchoid on the unit sphere
We shall describe spherical conchoids of lines and circles and the choice of a coordinate system.

and study their algebraic properties at hand of their equa-yye oy 1y de the case= I which yields a pair oflistance
tions. Then, we discuss the shape of the principal views of : 2 . .
the spherical conchoids. The principal views are obtained curvesprov.|ded tha5 7 0. These d|§tance CUTVES are Cir-
as orthogonal projections to a triple of mutually orthogona ¢/€s onZ with spherical radius; — 3 in planes parallel to
planes where at least one of these planes is a plane of symthe equator plane. The choide= 0 shows that the equator
metry of the spherical curve. The resulting image curves can be seen as a trivial conchaie |. The casep= T also
are at most of degree 8 as is the case for the space curvegields circles as spherical conchoidd of

The focusF of the conchoid shall be at spherical distance
@€ ]0,1/2[ from . Therefore, its coordinates are

[z
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Now we are going to derive an analytical description of the
spherical conchoid. Assume th@aty,z) are the Cartesian
coordinates of a point on the conchoid of at the spher-
ical distanced € |0, 5[ with respect to the poirfe. These
coordinates satisfy Eq. (1). Sinfle F] is a greatcircle of

>, the pointsF, L, and the poinX on the conchoid are
coplanar with the centép,0,0) of . This is equivalent to

S\SpX—CrSp Y —SHCpz=0. (4)

Further, we have L= & which is measured along the
greatcirclgL, X]. Thus, the canonical scalar product of the
unit vectorsX = (x,y,z) andL = (cy,s,,0) yields the co-
sine of the angle subtained by L&nd therefore, we have

C\ X+ S, Y = COSD. (5)
We can eliminate from Egs. (4) and (5): These equations

are linear inc, ands,, and thus, we can solve this system
for ¢, ands, which gives

. COSd(Sp X— Cyp 2)
YT S0y g
COSDSy Y
S\ =

Sp(X% +y?) — Co XZ

Sincecy?+s)? = 1 holds for any\ € C, we arrive at an im-
plicit equation of the spherical conchoidsf a (spherical)
linel:

COZ 8 ((Sp X—Co 2)+5¢Y?)
c: —(sp(X+y?)—cox2)? = 0, (6)
¥+y 47 =1

Obviously,c is a space curve of degree 8, since it is the
intersection of a quartic surfage(an example of which is

Figure 5: A spherical conchoid is the intersection of the
unit sphere with a quartic surface.

Theorem 1. The spherical conchoid c of a (spherical)
line | with respect to the focus F at (spherical) distance
d €10, 7| is an algebraic space curve of degrdand can
be given by the two equatiofB).

It is clear that these curves are spherical so that it is not
worth to be mentioned that Eq. (1) is fulfilled by the coordi-
nategx,y, z) of a generic point on the conchoid. Therefore,
only the first equation of (6) matters. Thus, such curves are
often called ofspherical degree four

The three different shapes of conchoids of a line that can
be observed in a plane also appear on the sphere as can be
seen in Figure 6. There are conchoids with loajes,they

have a spherical double point (actually a pair of opposite
double points) with real tangents at the double pé&int

0 > @. The conchoids with spherical cusps (a pair of op-
posite cusps) appear if, and only &= @. In the case of

0 < @, we observe thdt is an isolated (spherical double)
point on the conchoid.

As can be seen from Figures 4 and 6 the spherical con-
choids always consist of two branches. This is caused by
the fact that points in spherical geometry are actually a pai

of antipodal points on the sphere. Therefore, any singular

displayed in Figure 5) with the unit sphere. Thus, we can point on a conchoid also shows up twice. Even the spheri-
cal singularity is a pair of antipodal points.

say:

Figure 6: Three different appearances of spherical conchoids of @thetor:d > @ (left), d = @ (middle),d < @ (right).
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2.1 Principal views of spherical conchoids
g —

NI =

(n-1)(n-2)- yds,
S

The orthogonal projections ofonto the three planes=0,

x = 0, andy = 0 shall be called top view, front view, and ) ) .
(right) side view. We can state: where is the set of singular points omandd; are the

o-invariants of all singularities ow. According to the
Theorem 2. The front and top view of a spherical con- Milnor-Jung formula, thed-invariantd can be computed
choid given by Eq(6) with 3 € ]0, 5| are of algebraic de-  from the Milnor numbep and the branching numbérof
gree8 and of genug, i.e, they are elliptic. The right side  a singularity asl = %(LH— b—1). Thus, an ordinari-fold

view is a rational quartic. point has invariantg, k(k— 1), k], see [2, 3].

Proof. The equations o€’s principal views can be ob- We have to distinguish between two cases wheghgrd
tained from (6) by simply eliminating, x, ory. Sincec is or = 0.

of degrge 8, the principal views ofire at most of degree 8._ (1) Let us first assume that:~ &:

Reductions of the degree occur only in cases where the im- ) N ) ) ) _ _

age plane is a plane of symmetry of each braneh,each The singularities of the right side view are given in Table
point of the image curve is the image of two pointson 1. Since the genus equals zero, the curve showing up in
Because of the special choice of the coordinate system, wehe right side view is rational. Note that both singulastie
see that is symmetric with respect to the plagie- 0, and  are ideal points of thé, z-plane. The point0:1:0) is
therefore, the side view is covered twice. Hence, itis of de- an isolated tacnodeég., a point where a pair of complex
gree 4. When computing the resultants of both equationsconjugate linear branches touches a real tangent at the real

in Eq. (6) with respect tg, we find the square of point (0: 1:0). The remaining singularity is an ordinary
double point. The right side view of the spherical conchoid
q: (C\X+92)?2 — 25,¢, Sin* dxz is displayed in Figure 7.
—(Cp) COF 5+ 25,2)Z +52siP 5 =0 _
| right side view |

as the equation of the right side view of the spherical con- degc) =4
choid. S (0:1:0 [2,2,2]
The computations can be carried out by Maple. The S | (0:1:—cotg) | [2,1,2]
algcurvespackage allows us to compute the singularities genusc) =0

and the genus of an algebraic curve. We summarize the re-
sults in tables: Besides the degree we give the singularitie Table 1: Singularities on the right side view.

in terms of homogeneous coordinates (with the homoge-

nizing factor always in the first position), the invariants In Figure 8 we can observe another phenomenon which
[m,d,b], wherem is the multiplicity, d is the&-invariant,  may not only appear in connection with spherical con-
andb is the branching number. choids. The algebraic image curve carries points that are
Note that for an ordinaryn-fold point the equatiom = b outside the silhouette of the unit sphere. Thus, thesepoint
holds. In any other case we hawe> d. The genug of a cannot be the images of points on the spherical curve. The
planar algebraic curveof degreen is the integer points on these parts of the curve are capjadasitic

parasitic branch

parasitic branch O;"o
Figure 7: Right side view of the spherical conchoid shows )

no singularity in the affine part. Note that the  igyre 8: Singularities on the principal views of spherical
image of the focus is not singular. conchoids of lines.
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The front view shows a curve of degree eight (shown in conchoid on the upper and lower hemisphere, see Figures
Figure 9). It has a pair of complex conjugate ordinary dou- 8 and 10. The singularities of the spherical conchoid’s top
ble points(0 : +i : cy) at the ideal line of they,z-plane. view are listed in Table 3.
Further, there is an ideal 4-fold point witb-invariant

d = 12. Among the four singularities in the affine part

of the curve (the part we can see in Figure 9) there are

two tacnodeg1 : O : +5sind) which are the images of the

top most pointd; andT; of the conchoid on the front and

back side of the sphere (cf. Figure 8). The fact that the two

linear branches are in contact at the common image of the

top most point is caused by the fact that the spherical con-

choid has horizontal tangents at both poifisandT,. The

image of the spherical focUs (antipodal pair) completes

the list of singular points, cf. Table 2.

Figure 10: The top view of the spherical conchoid shows up
to six singular points.

| top view |
degc) =8
Si2 | (1:4+c0sd:0) | [2,2,2]
S4 (1:£c9:0) | [2,1,2]
7 S56.7,8 (1:0:w) [2,1,2]

— S9.10 (0:1:+i0) [2,4,2]
Si112 (0: +Sp: 1) [2,1,2]
Figure 9: The front view of the spherical conchoid shows genugc) =1
up to four singularties.

Table 3: Singularities on the top view.

| front view |
degc)=8 (2) Finally, we deal with the casg= 9, i.e, the curves
S| (1:0:£sp) [2,1,2] with cusps.

Ti2 | (1:0:%sind) | [2,2,2] We do not have to go through all the details. There are
S (0: 1 -0 [4,12,4] some minor changes in the types of some singularitiers
Se7 | (0:ti:cy) | [2,1,2] showing up on the different views. Figure 11 shows the
genugc) =1 right side view, the front view, and the top view.

Table 2: Singularities on the front view.

| right side view |

The top view has six real ordinary double points (see Fig- degc) = 4
ure 10). These are the image poifiscy,0) of F and its S 0:1:0 2.2.2]
antipode. Further, there are four ordinary double points at genus = 1 12y
(0,w) wherew is a solution of the quartic equation
t4s? + 2o §(Cy? — S¢°) — Co>COS 8 = 0. Table 4: Singularities of the right side view of the curve
with cusp.

Two of these double points are real, two are complex con-

jugate. The ideal pointé0 : 1 :+i) of the [x,y]-plane are  The right side view of the spherical conchoid with cusp
double points on the top view of the spherical conchoid. shows no singularity in the affine part. There is only one
However, they are not ordinary double points, for tieir  ideal point which is a tacnode, cf. Table 4. In this case
invariant equals four. At these points the curve hyperoscu-the curve is of degree four, but nevertheless, it has genus
lates itself. Further, we find tacnodes(at: +cosd : 0) 1 and is, therefore, elliptic since the only singularity has
being the images of the front and back most points of the &-invariantd = 2.
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Figure 11: From left to right: the right side view, the front view, anattop view of the spherical conchoid with
cusp. The front and top view show triple points that are cosepamf cusps and linear branches.

| front view | There is a special type of spherical conchoid if we choose
degc)=38 d = 7. In this case the conchoid construction assigns to
Si2 | (1:+£sind:0) | [3,3,2] each point € | the absolute polar pointge., theorthogo-
S (0:1:0 [4,12,4] nal point Hence, the two branchesde= —J and tod =
&5 | (0:4ircosd) | [2,1,2] are identic since opposite points represent the same point.
genugc) =1 All the three principal views obrthogonal conchoidare

curves of degree four. Figure 12 shows an axonometric
view of some orthogonal conchoids together with the three
principal views of them.

Table 5: Singularities of the front view of the curve with
cusp.

The front view shows a pair of triple points. Here, the im-
ages of the top most points and the image of the fdeus
coincide. These triple points haweinvariantd = 3 and
branching numbeb = 2, cf. Table 5. Thus, these triple
points are composed singularities, consisting of an ordi-
nary cusp sitting on a linear branch. Further, there are two
complex conjugate ideal singular points on the front view.

| top view |
degc)=8
Si2 (1:£cosd:0) | [3,3,2]
4 (0:1:+i) [2,1,2]

S (0:+isind: 1) | [2,1,2]
S7,8,9,10 (1 :0 ZW) [2,1,2]
genugc) =1

Table 6: Singularities of the top view of the curve with
cusp.

Again, the top view shows more singularities then any
other view. The two triple points (see Table 6) showing

up are composed singularities of the same type as those ifFigure 12: Above: Some orthogonal conchoids of the equa-
the front view. Furthermore, there are four ordinary double tor. Below: Right side view, front view, and top

points (two real ones and a pair of complex conjugate) at view of some orthogonal conchoids.
(1:0:w) wherew is a solution of the quartic equation

t*sy? —t?cog 8(2 — cog 3) — cod 5 = 0. The curves in the right side view are two-fold hyperbolae
in a pencil of the second kind with the images of the north
According to the genus formula the front and top view are and south pole as well as the ideal point of ¥axis for
of genus 1, and thus, elliptic. O the base points.
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2.2 Constructive approach
2.2.1 Planar and spherical tangents

The kinematic generation of conchoids allows us to con-

Figure 14 illustrates the construction of the tangetd
the spherical conchoid at some po¥it Actually, the pla-
nar construction has to be translated into the spherical set
ting: We intersect the greatcircle orthogonal to the equato
| through the point. with that greatcircle througk that

struct tangents to conchoids in the plane, see for exampleg orthogonal to the greatcircle joiningandF and obtain

[14]. The same holds true in the spherical case, cf. [6, 12].

]

Figure 13: The instantaneous pole P of the motion of the
line [L,X] with respect to the fixed system is
found as the intersection of two normals.

the instantaneous spherical p&tgactually a pair of an-
tipodal points). The spherical normal of the conchoid at
X is the great circle joining andP. Finally, the spheri-
cal tangent is the greatcircle orthogonal to the spherical
normal through the point.

2.2.2 Planar and spherical osculating circles

Figure 15 shows the construction of the osculating ciocle
at a generic poinK on a planar conchoid. We use Bo-
billier's construction (see [14]). For that purpose we have
to find two pairs of assigned points of the quadratic trans-
formation that maps a poitd to its center of curvature
U*. The pointL is moving on a straight ling, and thus,
the center of its path is the ideal point of all lines or-
thogonal tol. Further, we observe that the life,F] is
rotating abouf while gliding throughF. Thus,F is the

In Figure 13, the construction of the tangent to the planar €nvelope ofL, F] andF = A*is the center of curvature for

conchoidc at some poinX is shown. The kinematic gen-
eration of the curve shows the way: In order to find the
instantaneous polP of the motion of the lindL,F] we
observe that is gliding on the linel, and thus, the pole
of the motion of|L,F] with respect to the fixed system

is the ideal point of the lines orthogonalltoSincelL, F|

is gliding throughF and rotating about at the same time
the instantaneous poR is also contained in the line or-
thogonal to[L,F] throughF, see [14]. The construction
also works at the double point since this is a singularity of
the algebraic curve but not for the traceXof The tangent

t of catX is orthogonal tdP, X].

Figure 14: The construction of the instantaneous pole P
and the tangentt on the sphere.

the trace of the ideal poik = [L,F]* of all lines orthog-
onal to[L,F]. The two pairgL,L*) and (A, A*) uniquely
define thequadratic curvature mapping

/

Figure 15:Bobilier's construction simplifies in the case of
the conchoid.

Now, we can apply Bobbilier's construction to any of the
pairs(L,L*) or (A,A*) in order to completéX, X*) with
the yet unknown poinX*. Note that[L,A] N [L*, A*]
QaL defines an auxiliary linga := [QaL, P] with the prop-
erty < (gaL, P) = % (gax, p) (after proper orientation), see
[14], wherep is the pole tangent.e., the common tangent
to the two polhodes &.

In the case of the conchoid it is not necessary to con-
struct the pole tangerp since we only have to add an
angle as shown in Figure 15. On the auxiliary lige

we find the pointQax = [A, X] N gax, and finally, X*
[X,PIN[A*,Qax].
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In order to find the spherical osculating cird¢as shown 3 Conchoidsof acircle

in Figure 16) we translate all the constructions done in

the planar case to the sphere. We are allowed to do thisThe construction of a conchoid is independent of the
since the quadratic curvature mapping can be lifted to the chojce of the directrix curve. If we replace the lih@y
sphere. We consider the Euclidean unit sphere to be placed, cjrcle, we obtain the conchoids of circles. The analytic
such that it touches the Euclidean plane (carrying the pla- 55 el as the constructive treatment of conchoids of Gircle
nar figure) at the instantaneous peleThen, we perform does not differ that much from the affore mentioned types

a gnomonic projection _from the plane to the sphere. The of conchoids. Since circles can also be found on a sphere,
center of the projection is the center of the sphere, and thus , . .
we can also find conchoids of circles on the sphere. We

the projectively extended Euclidean plane is mapped to theWiII not discuss the conchoids of a circle in the plane and

sphere model of projective geometry. The gnomonic pro- . . .
jection is locally (aroundP) conformal, and therefore, the on th? sphere in all detfeuls. We. shall just show that the
quadratic curvature mapping is lifted to that on the sphere. equations of these special spherical curves can be derived

. . . in a similar way.
Figure 16 shows the construction of the spherical center of y

curvature. At this point we shall remark that the spherical Conchoids of a circle in the Euclidean plane are of alge-
osculating circleo is not a greatcircle oB, exceptin those  braic degree 6. Surprsingly, their spherical counter parts
cases wher¥ is a spherical point of inflection. The spher- are of algebraic degree 8 (or, equivalently, of spherical de
ical radius of curvature equals the spherical distancé of gree 4), although we would expect them to be of degree
and ist center of curvatup€*. 12. Some spherical conchoids of a circle are displayed in
Figure 17.

The computation of an equation of spherical conchoids
slightly differs from that of spherical conchoids of (spher
ical) lines.

Again, we assume that the focbdies iny = 0 at latitude

@< [0,7[. It means no restriction to assume tlfais a
point on the upper hemisphere. There is a change in the
directrix| which shall henceforth be the circle of latitiude

B #0,T. Thus, the directrix is given by

L(A) = (cpcr,Cpsy,Sp) With A € [0, 2 (7)

(with cg := cosP3 andsg := sinp). Here, we should remark
that this restricts the class of spherical conchoids of-a cir

tion vields the spherical center of curvaturé X cle. In this case, there exists a greatcircle throkgh a
for a):w arbitrary I;)oint X on the spherical con- plane parallel to the plane bivhich, in general, needs not
choid be true. However, we deal with the simpler type.

Figure 16: The spherical version of Bobillier's construc-

Figure 17: Spherical conchoids of a circle show cusps, and two typesuiblg points.
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Figure 18: Spherical conchoids as intersections of a quartic and thiesphere.

Let X = (x,y,2) be the point on the conchoid bfwith re- The spherical conchoid of a circle is the intersection of a
spect toF at spherical distanc& € [0, 5[. Note thatX is quartic surface with the sphebe Some examples of the
also a point on the unit sphere, and therefgte; y? + 22 = quartic surface are displayed in Figure 18. Like in the case
1 holds. The collinearity condition &, X, andL from Eq. of spherical and planar conchoids of lines, the spherical
(4) now changes to conchoids of circles can have cusps, isolated, and ordinary

double points, see Figure 17.

S0 XF (Colp — r%p)y — G, 2=0 ®) Equations of the principal views (right side view, front
with tg := tanp. Between the poiri{t) on the directrixand  vjew, top view) can be easily derived by eliminating co-
the pointX on the conchoid we measure the spherical dis- ordinatesy, x, z) from the two equations given in Eq. (10).
tanced which is a value with sign. Consequently, Eq. (5) 1t is not necessary to go into all the details of the compu-
modifies to tations and discussions. They are similar to those in the

CACp X+ $\Cp Y+ S 2= COSD. (9) previous section. Now, we can state (cf. Theorem 2):

Theorem 4. The front and top view of spherical conchoids

of circle are algebraic curves of degr8and genuq, i.e.,
they are elliptic. The right side view is an elliptic quartic

Like in the case of the spherical conchoids of lines, we
solve the system of linear equations (8), (9) with respect to
¢\ ands,. Sincecy?+s,%> =1 for all A € C, we have the
following two equations that have to be satisfied by the co-
ordinates of a point on the spherical conchoiof a circle References
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ABSTRACT

The theory of the isoptic curves is widely studied in the
Euclidean plane E? (see [1] and [13] and the references
given there). The analogous question was investigated by
the authors in the hyperbolic H2 and elliptic Z2 planes
(see [3]. [4]), but in the higher dimensional spaces there is
no result according to this topic.

In this paper we give a natural extension of the notion
of the isoptic curves to the n-dimensional Euclidean space
E" (n> 3) which are called isoptic hypersurfaces. We de-
velope an algorithm to determine the isoptic hypersurface
Hap of an arbitrary (n— 1) dimensional compact parametric
domain D lying in a hyperplane in the Euclidean n-space.
We will determine the equation of the isoptic hypersur-
faces of rectangles D C E2 and visualize them with Wol-
fram Mathematica. Moreover, we will show some possible
applications of the isoptic hypersurfaces.

Key words: isoptic curves, hypersurfaces, differential ge-
ometry, elliptic geometry

MSC2010: 53A05, 51N20, 68A05

O izooptickim hiperplohama u
n-dimenzionalnom euklidskom prostoru

SAZETAK

Teorija o izoopti¢kim krivuljama dosta se proudava u eu-
klidskoj ravnini E2 (vidi [1] i [13] te u referencama koje se
tamo mogu nadi). Autori su proucavali analogno pitanje
u hiperbolitkoj H? i eliptitkoj ravnini £2 (vidi [3], [4]),
medutim u visedimenzionalnim prostorima nema rezultata
vezanih za ovu temu.

U ovom ¢&lanku dajemo prirodno proSirenje pojma
izoopti¢kih krivulja na n-dimenzionalni euklidski pro-
stor E" (n > 3) koje zovemo izoopti¢ke hiperplohe.
Razvijamo algoritam kojim odredujemo izoopti¢ke hiper-
plohe Hp proizvoljne (n— 1)-dimenzionalne kompaktne
parametarske domene D koja leZi u hiperravnini u n-
dimenzionalnom euklidskom prostoru.

Odredit ¢emo jednadZbu izooptickih hiperploha pravokut-
nika D C E? i vizualizirati ih koristeéi program Wolfram
Mathematica. Stovise, pokazat ¢emo neke moguce pri-
mjene izopti¢kih hiperploha.

Klju€ne rijeti: izoopti¢ke krivulje, hiperplohe, diferenci-
jalna geometrija, elipti¢ka geometrija

1 Introduction

so-called Thales circle (without the endpoints of the given
segment) with center the middle of the line segment.

Further curves appearing as isoptic curves are well stud-
ied in the Euclidean plane geomef§, see e.g. [8],[13].

In [1] and [2] can be seen the isoptic curves of the closed,
strictly convex curves, using their support function. The
papers [14] and [15] deal with curves having a circle or an
An isoptic curve formed from the locus of two tangents ellipse foran isqptig curve. Isoptic curves of conic saaio
meeting at right angléa = J) are called orthoptic curve. have been studied in [6], [8] and [11]. A lot of papers con-
The name isoptic curve was suggested by C. Taylor in his C€ntrate on the properties of the isoptics e.g. [9], [7]] [10
work [12] in 1884. and the references given there.

In the Euclidean plan&? the easiest case i is a line N the hyperbolic and elliptic planés? and £ the isop-
segment then the set of all points (locus) for which a line tic curves of segments and proper conic sections are deter-
segment can be seen under angleontains two arcs in ~ Mined by the authors ([3], [4], [3]).

both half-plane of the line segment, each are with central In the higher dimensions by our best knowledge there are
angle 21. In the special casa = 7, we get exactly the  no results in this topic thus in this paper we give a natu-

Definition 1 Let X be one of the constant curvature plane
geometrieE?, H?, £2. The isoptic curveC® of an ar-
bitrary given plane curve” of X is the locus of points P
where( is seen under a given fixed anglg0 < a < ).
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ral extension of the Definition 1 in the-dimensional Eu-
clidean space&E". Moreover, we develope a procedure
to determine the isoptic hypersurfagf, of an arbitrary
(n— 1) dimensional compact parametric dom&nlying

in a hyperplane in the Euclidean space. We will determine

For the pointP(xy, Xz, . .., Xn) = P(x) the inequalityx, > 0

will be assumed. Projecting the surface onto the unit
sphere with centr®, we have the following parametriza-
tion:

the equation of the isoptic hypersurfaces (see Theorem 1)yP(U1,Uz, ..., Un-1) =

of rectangles? c E? and visualize them with Wolfram
Mathematica (see Fig. 2-3). Moreover, we will show some
possible applications of the isoptic hypersurfaces.

(-8

Figure 1:Projection of a compact domairD to unit
sphere inE3

2 Isoptic hypersurface of a compact domain

lying in a hyperplane of E"

f1(ug,uz,...,Un-1) f1(u)
fo(ug, Up, ..., Un-1) fa(u)

- A I B 2.2)
fn(uz,Uz,...,Un-1) fn(u)

Here, ifi # nwe have
fi(U,...,Un 1) — X1

fi(u) — =
V(U 1) =302+ (ot (U, Un1) =X 1)+ ()2

)

else(i=n)

—Xn
VU, U 1) =502 (U, Un 1) =¥ 1)2 4 ()2

fn(u)

Now, it is well known, that the measure of the- 1-surface
can be calculated using the forumla below:

S(X1,X2, ..+, %n)

by rbp
A /az

bn-1

vdetG duy_1dup_2...du; (2.3)

an-1

In Definition 1 we have considered that, the angle can beby successive integration, where

measured by the arc length on the unit circle around the
point. From this statement, Definition 1 can be extended to

then-dimensional Euclidean spag8.

Definition 2 The isoptic hypersurfacé( in E" (n > 3)

of an arbitrary d dimensional compact parametric do-

main D(2 < d < n) is the locus of points P where the

measure of the projection ab onto the unit(n— 1)-

sphere around P is a given fixed valwe (0 < o <
n—-1

r]g"—;) [T (t) = [’ X~ tedt] (see Fig. 1).

We consider a compact parametrio — 1) (n > 3)-

dimensional domairD lying in a hyperplane oE". We

can suppose the next form of parametrization:

@(x,y) plane surface

f}(ulv u27 ey Un—l)
fa(ug,Up, ..., Un-1)
(p(ul,uz,...,un,l) = ,
ﬂ]*l(ula UZ; LR Unfl)
0

€ [a,hbi], @,bi €R), (i=1,...

(2.1)

wherevy; ,n—1).
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G=J=
ofi  0fy af \ T
duy ouy O0up_1
on ot oh
_ duy ouy Oup_1
afn 1 ofnfl 0fn,1
ouy oup OUn_1
o on ot
ouy oup 0un 1
o of o,
ou oup Oun_1
Ofn,l afn 1 ofn 1
duy duy OUn_1

The isoptic hypersurfac#/; by the Definition 2 is the fol-
lowing:

Hy = {x € E"la = §(x1,%2,...,%n)}

In the general case, the isoptic hypersurface can be deter-
mined only by numerical computations. In the next section
we show an explicite application of our algorithm.
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3 Isoptic surface of the rectangle

Now, let suppose that = 3 and C E? is a rectangle
lying in the[x,y] plane in a given Cartesian coordinate sys-
tem. Moreover, we can assume, that it is centered, so the

S(Xo,Y0,20) =

parametrization is the following:

. X
Q(x.y) = (y) ,
0

wherex € [—a,a] andy € [-b,b] (a,b € R). And the
parametrization of the projection froR(Xo, Yo,Z) can be
seen below:

(3.1)

X—Xg
V (x=%0)2+(y—Y0)%+7
Y—Yo
Vv (Xfm)zjgfyo)zﬂé

V/ (x=x0)2+(y—Y0)2+73

o(x,y) = (3.2)

Remark 1 It is clear, that the computations is similar if
D is a normal domain concerning to x or y on the plane.

Fdydx =

/+a/+b 2| 3.3)
3D (x—x0)2+ (Y- Y0)2+ Z) °

arctan( (a-x0)(b-yo) )

20/ (a—x0)2+(b—y0)2+73

arctan( (atx0)(b-¥o) ) n

29v/ (a+%0)2+(b—y0)2+23

arctan( (a-x0) (b+¥0) )

20/ (a—x0)2+(b+y0)2+73

(a-+%)(b+Y0) .
201/ (a+%0)2+(b+y0)2+23

arctan(

Remark 2 It is easy to see, if a> © and b— o, then the
angle tendst t®rt for every g. This implies some kind
of elliptic properties. The normalised cross pruduct of the
two partial derivatives can be interpreted as a weight func-

The difference is appered only on the boundaries of the in-tion on this elliptic plane. Now, if we have a domain on the

tegrals.

plane, we can integrate this function over the domain, to
obtain the angle. But the symbolic integral for a given do-

Now, we need the partial derivatives, to calculate the sur- Main almost never works, so in this case, it is suggested

face area:

(y-y0)%+7
((x—x0)2+(y—Yo0)2+23)3/2
—(X=X0)(Y—Y0)
((x%0)2+(y—¥0)2+%)%2 | °
2p(X—Xo)
((x—x0)2+(y-y0)2+75) %>

(B((Xv y) =

—(X=%0) (y—Y¥o)
((x—x0)2+(y—Yo)2+273)3/2
(x=%0)*+7
((x—x0)2+(y—Yo)2+23)3/2
Z(y—Yo)
((x—x0)2+(y—y0)2+75) %

%(Xv y) =

/medskip
Taking the cross product of the vectors above, we obtain:

2p(Xo—X)
((x—x0)2+(y—yo0)2+23)?

2(Yo—Y)
((x—x0)2+(y—y0)?+75)?

Q(XY) x @Q(Xy) =

((x—x0)2+(y—y0)?+73)?

Now we can substitutég, (x,y) x (g,(x,y)\ into formula
(2.3) to get the spatial angle:

also, to use numerical approach.

Using the results abowe, we can claim the following theo-
rem:

Theorem 1 Let us given a rectangl® c E? lying in the
[x,y] plane in a given Cartesian coordinate system. More-
over, we can assume, that it is centered at the origin with
sides(2a,2b). Then the isoptic surface for a given spa-
tial anglea (0 < a < 2m) is determined by the following
equation:

_ (a-X)(b-y)
a= arctan( z\/(a—x)2+(b—y)2+22) +
(ax)(b-y) n
zy/(@-x)2+(b-y)?+2

(a—x) (b+y) +
z/(a—x)2+(b—y)2+2

arctan(

arctan(

(a+x)(b+y)
z/(@x2+(b-y)?+2 )

arctan(

In the following figures, there can be seen the isoptic sur-
face of the rectangle:
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Figure5: 2=11,b=5a= 1

Figure 6: 22=7, 2b=13,a = J (both half-spaces)

Figure4: 2=7,2b=11,a =

ol

Figure 7: =7, 20=13,a = J (both half-spaces)
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Remark 3 The figures show us, that this topic has severeal
applications, for example designing stadiums, theaters or
cinemas. It can be interesting, if we have a stadium, which

has the property, that from every seat on the grandstand,[7

the field can be seen under a same angle.

Designing a lecture hall, it is important, that the screen or
the blackboard is clearly visible from every seat. In this
case, the isoptic lecture hall is not feasible, but it can be
optimized.

e

Figure 8:MetLife Stadium:
http://www.bonjovi.pl/forum/topics58/
25-27072013-east-rutherford-vt3278.htm
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ABSTRACT

The quasi-hyperbolic plane is one of nine projective-metric
planes where the absolute figure is the ordered triple
{i1,J2,F} consisting of a pair of real lines ji and j»
through the real point F. In this paper some basic geomet-
ric notions of the quasi-hyperbolic plane are introduced.
Also the classification of gh-conics in the quasi-hyperbolic
plane with respect to their position to the absolute figure
is given. The notions concerning the gh-conic are intro-
duced and some selected constructions for gh-conics are
presented.

Key words: quasi-hyperbolic plane, perpendicular points,
central line, gh-conics classification, osculating gh-circle

MSC2010: 51A05, 51M10, 51M15

Uvod u planimetriju kvazi-hiperboli¢ke ravnine
SAZETAK

Kvazihiperboli¢ka ravnina je jedna od devet projektivno
metri¢kih ravnina kojoj je apsolutna figura uredena troj-
ka {j1,j2,F}, gdje su j1 i jo realni pravci koji se sijeku u
realnoj to¢ki F. U ovom &lanku uvodimo neke osnovne
pojmove za kvazihiperboli¢ku ravninu, te dajemo klasi-
fikaciju konika u odnosu na njihov poloZaj prema apsolut-
noj figuri. Nadalje, uvesti ¢emo pojmove vezane uz konike
u kvazihiperboli¢koj ravnini i pokazati nekoliko izabranih
konstrukcija vezanih uz konike.

Kljuéne rijeci: kvazihiperboli¢ka ravnina, okomite tocke,
centrala, klasifikacija gh-konika, oskulacijske gh-kruznice

1 Introduction

variant under a given group of transformations. Klein was
influenced by some earlier research of A. Cayley, so today
it is known that there exist nine geometries in plane with
projective metric on a line and on a pencil of lines which
are denoted as Cayley-Klein projective metrics. Hence,
these plane geometries differ according to the type of the
measure of distance between points and measure of angles
which can be parabolic, hyperbolic, or elliptic. Further-
more, each of these geometries can be embedded in the real
projective planéP,(R) where an absolute figure is given

as non-degenerated or degenerated conic [4], [5], [12] (for
space and n-dimension see [11]).

In this article the geometry, denoted gsasi-hyperbolic

with hyperbolic measure of distance and parabolic mea-
sure of angle will be presented.

2 Basic notation in the quasi-hyperbolic
plane

In the quasi-hyperbolic plane (further in text gh-plane) th
metric is induced by a real degenerated conic i.e. a pair of
real linesj; and j, incidental with the real poinE. The
lines j1 andj, are called th@bsolute lineswhile the point

F is called theabsolute point In the Cayley-Klein model

of the gh-plane only the points, lines and segments inside
of one projective angle between the absolute lines are ob-
served. In this article all points and lines of the gh-plane
embedded in the real projective plaBgR) are observed.

There are three different positions for the absolute triple
{J1, j2,F}: neither of the absolute elements are at infinity,
only the absolute point is at infinity and the absolute point

In the second half of the 19th century F. Klein opened a and one absolute line are at infinity (see Fig. 1). The first
new field for geometers with his famous Erlangen program position of the absolute triple is used for constructions in
which is the study of the properties of a space which are in- this article.
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Jy

J,

Ji

J
Figure 1

For the points and the lines in the gh-plane the following
terms are defined:

e isotropic lines- the lines incidental with the absolute
pointF,

e isotropic points- the points incidental with one of the
absolute lineg; or j»,

e parallel lines- two lines which intersect at an isotropic
point,

e parallel points- two points incidental with an isotropic
line,

e perpendicular lines if at least one of two lines is an
isotropic line,

e perpendicular points two points @ andB) that lie on a
pair of isotropic lines 4 andb) that are in harmonic rela-
tion with the absolute lineg andj».

Furthermore, an involution of pencil of lind§) having
the absolute lines for double lines is called tiesolute
involution, denoted adgn. This is a hyperbolic involu-
tion on the pencilF) where every pair of corresponding
lines is in a harmonic relation with the double lingsand

j2 ([1], p.244-245, [6], p.46). Notice that every pair of
perpendicular points lie on a pair ¢y corresponding
lines. Hence, the perpendicularity of points in gh-plane is
determined by the absolute involution, therefdgg is a
circular involution in the gh-plane ([7], p.75).

Remark. Any two isotropic points on the same absolute
line are perpendicular and parallel. Any two lines from a
pencil (F) are perpendicular and parallel.

3 Qh-conics classification

There are nine types of regular gh-conics classified accord-
ing to their position with respect to the absolute figure:

e gh-hyperbola a gh-conic which has a pair of real tan-
gent lines from the absolute point,

- hyperbola of type 1h;) - intersects each absolute line
in a pair of real and distinct points,

- hyperbola of type Zh,) - intersects one absolute line
in a pair of real and distinct points and another abso-
lute line in a pair of imaginary points,

- hyperbola of type 3hs) - intersects each absolute line
in a pair of imaginary points,

- special hyperbola of type (hs) - one absolute line is
a tangent line and another absolute line intersects the
gh-conic in a pair of real and distinct points,

- special hyperbola of type @) - one absolute line is
a tangent line and another absolute line intersects the
gh-conic in a pair of imaginary points,

e gh-ellipse(e) - a gh-conic (imaginary or real) which has

a pair of imaginary tangent lines from the absolute point,

e gh-parabola(p) - a gh-conic passing through the abso-

lute point i.e. both isotropic tangent lines coincide,

- special parabolgps) - a gh-parabola whose isotropic
tangentis an absolute line,

e gh-circle(k) - a gh-conic for which the tangents from the
absolute point are the absolute lines.

In the projective model of the gh-plane every type of a gh-
conic can be represented with the Euclidean circle without
loss of generality (see Fig. 2). This fact simplifies the con-
structions in the gh-plane.

Figure 2
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Furthermore every gh-conig, except gh-parabolae, in-
duces an involutioip, on the penci(F) where the double
lines are the isotropic tangents of the gh-cami@and the
corresponding lines of the involutiop, are calledconju-
gate lines Notice that every gh-ellipse induces an elliptic
involution, every gh-hyperbola induces a hyperbolic in-
volution and every gh-circle induces an involution that
coincides with the absolute involutidgH.

Remark. A gh-conic is calledequiformif the isotropic
tangent lines of the gh-conic are in harmonic relation with
the absolute lineg; and j,. In terms of the above men-
tioned involutions a gh-conig is equiform if the absolute
involution IoH is commutative with the involutioy, in-
duced by the gh-conig. Notice that only gh-ellipses, gh-
hyperbolae of type 2 and gh-circles can be equiform [2],
[3]. e The pole of the directrix with respect to a gh-conic
is called afocusof the gh-conic. The number of foci
F,ie€{1,2,3,4},is equal to the number of directrices (see
Fig. 4).

Figure 4

In the following some basic notions related to a gh-conic
in the gh-plane are defined:

e The polar line of the absolute poiRtwith respectto a  ® The lines that are incident with the opposite foci are
gh-conic is called theentral line cor themajor diame-  calledisotropic diameterof a gh-conic (see Fig. 5). Es-
ter of the gh-conic (see Fig. 3). All gh-conics, except gh- Pecially for the gh-circles, which have one focus, the
parabolas, have a non-isotropic central line. The centralisotropic diameters are the lines of the pertgi). Hence
line of a gh-parabola is its isotropic tangent line, while fo @ gh-conic can have none, one, two or infinitely many
the special parabola it is an absolute line. isotropic diameters;, i € {1,2}.

e The gh-centerf a gh-conic are the points of intersec-

tion of the isotropic diameters and the central line of the
gh-conic. A gh-conic can have none, one, two or infinitely
many gh-center§, i € {1,2} (see Fig. 5).

e The intersection points of a gh-conic with its isotropic
diameters are callederticesof the gh-conic (see Fig. 5).
A gh-conic can have four, two, one or none vertigs €
{1,2,3,4}.

Figure 3

e Thedirectricesof a gh-conic are (hon-absolute) lines in-
cident with the isotropic points of the gh-conic, i.e. lines
incidental with the intersection points of the gh-conictwit
the absolute lineg, and j,. A gh-conic can have none,
one, two or four directrice$, i € {1,2,3,4} (see Fig. 4). Figure 5
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The absolute involutiorlgn can be observed as a point and conjugate points on the central line, and the isotropic
range involution on any non-isotropic line, hence it can be diameters as the perpendicular and conjugate lines of the
observed on the central line of a gh-conic, except for qh- pencil (F). The construction will be shown later. Notice
parabolae. A_Iso the involutiog, on a penc_|I(F) |n.duced that because the involution induced by a gh-circle coin-
by a gh-conicg can be observed as the involutigg of . . . . . .

cides with the absolute involution all pairs of conjugate

a point range on the central lireeof the gh-coniag, and ) } ) )
two corresponding points of involutiofy, are called con- points on the central line of the gh-circle are perpendic-

jugate points. Therefore, the gh-centers for the gh-elps ular points. Hence any point on the central line is its center
and gh-hyperbolae can be found as a pair of perpendicularand every line of the penc{F) is its isotropic diameter.

Aforementioned gh-conics and notions can be summarizdteifotlowing table:

| Qh-Conic | Directrix | Focus | Isotropic diametef Center | Vertex |
Ellipse 4 real 4 real 2 real 2 real 4 real
e
Hyperbola 4 real 4 real 2 real 2 real 2 real+
hy 2 imaginary
Hyperbola| 4 imaginary| 4 imaginary 2 imaginary 2 imaginary| 4 imaginary
hy
Hyperbola| 4 imaginary| 4 imaginary 2 real 2 real 2 real+
h3 2 imaginary
Parabola 2 real 2 real 1real 1 real 2 real
p
Special 0 0 0 0 0
parabola
Ps
Special 2 real 2 real 1 real 1 real 1real
hyperbola
hs1
Special | 2 imaginary| 2 imaginary 1 real 1 real 1real
hyperbola
he
Circle 1real 1 real infinite infinite 0
c
Table 1

For parabolae and special hyperbolae see figure 6.

Figure 6
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Remark. The gh-plane is dual to the pseudo-Euclidean gh-conicgwe observe the involutiog, induced by the gh-
(Minkowski) plane where the metric is induced by a real conicgand the absolute involutiofyy. These pencils will
line and two real points incident with it. Therefore the be supplemented by the same Steiner’s cenichich is an
notions defined above can be explained as duals of thearbitrary chosen conic throudh. Let a pair of isotropic
Minkowski plane. linesnandn; be the double lines of the involutiag. The

Th o do-Euclid | | | involutionslgn and @y determine two involutions on the
: .e C‘?”'CS_ N pseudo-tuclidean plane (pef'? an.e) are ClaSonics. Letthe point$D; andO, be denoted as the centers
sified in nine subtypes, hence the classification of gh-

i of these involutions. The lin®,0; intersects the conis
conics was based on [3], [9], [10]. Furthermore, the afore- at two pointd; andl,. Isotropic lines 6, = Fly, 0, = Fls)

mentioned elements for gh-conics can be presented as fo'ihrough these points are a common pair of these two invo-

lows: lutions. Hence, lines; ando, are isotropic diameters for

e the central line is a dual of the center of a conic in the the given gh-conig. The intersection pointS; and$; of

pe-plane, 01 andoy with the central linec are gh-centers of the given
gh-conic. Figure 7 shows the described construction for

e the directrices are a dual of the foci of a conic in the

hyperbola of type 3.
pe-plane,

) _ ) o The construction is based on the Steiner's construction
e the foci are a dual of the directrices of a conic in the (6], p.26, [7], p.74-75).

pe-plane, ) . .
Notice that for the hyperbola of type 2 the li@gO5 in the

e the gh-centers are dual to the axes of a conic in the pe-construction will not intersect the conscand therefore it
plane. has a pair of imaginary isotropic diameters. In general, two

The dual of the isotropic diameters are the intersections ofinvolutions on a same pencil (line) have a common pair of

the axes with the absolute line, but they were not of special €@l corresponding lines (points) if at least one of them is
interest in the pe-plane. Also the dual of the vertices in an elliptic involution. If both of the involutions are hyper

gh-plane are the tangents to the conic in pe-plane from theboIic then they have a common pair of real corresponding

above mentioned intersections. It should be emphasizecJines (points) if both double lines of one involution are be-
tween the double lines (points) of the other involution. In

that the dual of the vertices in pe-plane are tangents to the - o . )

. : the other case the common pair is a pair of imaginary lines
gh-plane from the gh-centers. Since the axes in pe-plane([G] 60)
and gh-centers in gh-plane are dual, therefore it was not™ P-55)-
chosen in this article to observe the vertices of a gh-conic

as aline.

Furthermore, the pairs of conjugate points on the central
line of the involution¢y induced by a gh-coniq in the
gh-plane are dual to the pairs of lines on which lie the con-
jugate diameters of a conic in the pe-plane. Consequently,
the aforementioned property of gh-centers for a gh-circle
is dual to the fact that all pairs of conjugate diameters of a
pseudo-Euclidean circle are perpendicular.

4 Some construction assignments

4.1 Qh-centers and isotropic diameters of the gh-
ellipses and gh-hyperbolae

Let a gh-coniog be given, that is not a gh-parabola. As
already mentioned, a pair of conjugate and perpendicu-
lar points on the central line will be gh-centers of a gh-
conic. In order to construct these gh-centers for the given Figure 7
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4.2 Osculating gh-circle of a gh-conic

Generally, it is know that two arbitrary conics have four
common tangents, therefore the same applies for a conic
and a circle. Furthermore, if three of this common tan-
gents coincide then the circle is called a osculating circle
of the conic at the point which is the point of tangency of
the triple tangent. Hence, there is an osculating circle at
any point of a conic.

Jy

Let a gh-conic be given, and a tangéxtat an arbitrary
point A of the gh-conic. Figure 8 shows the construction
of the gh-circle osculating a gh-conic at the poiiby us-
ing the elation(C,ta, D1, D'l) [8]. Let pointsJ; andJ; be Figure 9

the isotropic points of the tangetat The tangentsd; and

d, from the points) andJ, respectively, to the given qh- 4 3 Hyperosculating gh-circle of gh-conics

conic intersect at the poirt which corresponds to the

absolute poinf. The rayF/F intersects the tangeiy, A hyperosculating circle of a conic has a common quadru-
which is the axis of the elation, at the centeof the ela- ple tangent with the conic, hence it can be constructed only
tion. Hence the tangent lings and j» (absolute lines) of  at the vertices of a conic. The similar construction princi-
the osculating gh-circle correspond to the tangent lthes  ple as for the osculating circle can be performed to con-
andd, of a given gh-conic. Let the points of tangency of Struct the hyperosculating gh-circle at the vertex of a gh-
a gh-circle andj;, j» be denoted a®; andD», respec- conic.

tively. Let the point of tangency of a gh-conic adg d, Let the hyperboldn be given. The intersection points

be denoted aB; andDy,. ThereforeD}, D1 andD,, D, are andT> of the gh-conid; with its isotropic diameter are the

the pairs of corresponding points of the elation. Similar Vertices of the hyperbola. The hyperosculating gh-circle
construction principle is given in [13]. at the vertexT, is completely determined with the elation

(Tz,tz,Di,D;) (i =1,2) whereT; is the center and tangent
to at T, its axis. The tangent lineg and j» of the hyper-
osculating gh-circle correspond to the tangent lidgand
dz of the h;. Let the point of tangency of a gh-conlig
andds, d, be denoted aB; andD,, respectively. Let the
points of tangency of a gh-circle arjg, j» be denoted as
D; andDy, respectively.D;, D; andD,, D are the pairs
of corresponding points of the elation (see Fig. 10).

Figure 8

Remark. It should be emphasized that in a gh-plane it is
possible to construct infinitely many osculating gh-ciscle
at the isotropic tangency point if the given gh-conicisa -~
gh-circle. The gh-circle osculating the given gh-cirklat

its isotropic pointl;, (i = 1,2) can be constructed by using

the elation(F, ji,A,A), (i = 1,2). The pointF is the cen-

ter of the elation, the absolute lingits axis,A an arbitrary
chosen point on gh-circle ardl an arbitrary chosen point

on the rayAF (see Fig. 9).

Figure 10
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Izometrije u Escherovim radovima

Isometries in Escher’'s Work
ABSTRACT

For better understanding of M. C. Escher's tesselation
graphics we provide an overview of planar isometries and
classification of plane symmetry groups. Some of the
plane symmetry groups are explained on prominent Es-
cher’s graphics.
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metry groups
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1 Uvod

Simetrija kao aspekt umjetnosti cijeni se i interpretira
vet stoljeCima. Neki od ranijih umjetnickih radova koji
su integrirali simetriju datiraju jo$ iz doba antickih kul-
tura. Euklid se bavio simetrijom u desetoj knjizi svo-
jih Elemenata gdje definira kada su neke dvije figure
simetricne. Nizozemski umjetnik-grafiCar Maurits Cor-
nelis Escher (1898.-1972.) ima zadivljujuci umjetnicki
opus te je omilien m&u matemati¢arima. Njegova os-

Izometrije u Escherovim radovima
SAZETAK

U ovom ¢&lanku dan je pregled izometrija ravnine i klasi-
fikacija ravninskih grupa simetrija kao matematitka pod-
loga za razumijevanje "trikova” kojima se M. C. Escher
sluZio prilikom stvaranja velikog broja svojih grafika. Raz-
matrat ¢emo grupe simetrija na primjerima nekih od naj-
poznatijih Escherovih grafika.

Kljuéne rijeci: Escher, izometrije, poplotavanje, ravninske
grupe simetrija

2 Definicije i svojstva izometrija

Na poCetku navodimo osnovne definicije i svojstva
izometrija u euklidskoj ravninE? ([3], [4], [5]).

Definicija 1 1zometrija euklidske ravnine je svaka bijek-
cija f : E2 — E? ravnine na sebe koj&uva udaljenost
toCaka, tj. takva daje (f (A), f(B)) = d(A, B) za sve toke
AiBiz E.

Svojstva izometrija u odnosu na kompoziciju funkcija:

novna inspiracija potice od arabesknih ukrasa srednjov-Teorem 1

jekovne palace Alhambre épanjolskoj. Impresivni opus
obuhvacta, izméu ostalog, i 43 grafike koje Escher jednos-
tavno naziva (nprescher drawing no. B Ta djela nastala

(i) Kompozicija izometrija f i g, fog, je takaler
izometrija.

su u razdoblju 1936.-1942. nakon &ega je Escherova pop- (i) Neka je f izometrija. Tada je njezin inverz ¥

ularnost poprimila svjetske razmjere. Escherove grafike su
predmet znanstvenihi stru¢nih radova matematicara, infor-

takoder izometrija.

Definicija 2 Kazemo da je izometrija involutorna ako je

maticara, grafiara, a kao vrsta poploCavanja ravnine zan-¢ . ¢ _iq i f £id.

imljive su i u kristalografiji ([2]). U ovom radu, koji je nas-

tao na osnovu studentskog seminara, otkrit cemo tehnikulnvolutornaizometrija je sama sebi inverz.

kreiranja nekih njegovih grafika pomot¢u izometrija u eu-

klidskoj ravnini. Na osnovu klasifikacije ravninskih grupa

Definicija 3 Figura je svaki podskup od%&

simetrija prepoznat cemo grupe simetrija na primjerima. Za figuruF iz Euklidske ravnineE?2 kazemo da jdiksna
Neke Escherove grafike mogu se promatrati i u neeuklid- figuraizometrije f ako je f preslikava u nju samu, tj. ako

skoj ravnini ([6]).

jef(F)=F.
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Svojstva izometrija u odnosu na fiksnu figuru: Teorem 3
Teorem 2 Neka je f izometrija. (i) Svaka involutornaizometrija je ili osna ili centralna
simetrija.
(0 ?de(le'séef’ilfs ioaagif;g 'dd;""“” razltih fiksnih pravaca (i) Kompozicija dviju rotacija je ili rotacija ili
: ’ translacija.

(if) Spojnica dvaju fiksnih taka od f je fiksni pravac iy |zometrija je klizna simetrija ako i samo ako se beo

od f. predciti u obliku kompozicije jedne osne i jedne
(iiiy Ako je f involutorna izometrija, onda kroz dku centralne simetrije ili jedne centralne i jedne osne

koja nije fiksna za f prolazi tmo jedan fiksni pravac simetrije.

za f.

(iv) Svaka izometrija je ili translacija ili rotacija ili kI-

. _ . . izna simetrija.
Definicija 4 Involutorna izometrija kojoj su sve t&e

pravca a fiksne zove se osna simetrija s obzirom na pravac
a, u oznacig.

Escher je u svojim grafikama koristio izometrije: osnu
simetriju, translaciju, rotaciju i centralnu simetriju. Svo-
jstvo tih izometrija je da se mogu definirati pomo€u osne
simetrije.

Slika 1: Primjer simetrija na Escherovoj grafici
(Angel and devil)

Definicija5 lzometriju koja se mie prikazati kao kom-
pozicija g oS dviju osnih simetrija § i s, zovemo
translacija ako su osi simetrije a i b paralelni pravci.

Definicija 6 Izometriju koja se mie prikazati kao kom-
pozicija $ 0 S dviju osnih simetrija gi Sp zovemo rotacija
ako osi simetrije a i b nisu paralelni pravci.

Definicija 7 Centralna simetrija je rotacijaso S za koju
Su osi simetrije a i b okomiti pravci.

Definicija 8 1zometrija koja se mite prikazati u obliku
kompozicije go s, 0 s, gdje je pravac g okomit na pravce
aib zove se klizna simetrija.

Klizna simetrija je najzastuplijenija u Escherovim
grafikama.

Sljedecti teorem daje karakterizaciju nekih izometrija: Slika 4: Primjer klizne simetrije na Escherovoj grafici
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3 Grupe simetrija

Neka jelz(E?) skup svih izometrija Euklidske ravnine
E2. Poznato je da jéz(E?) zajedno s komponiranjem
funkcija kao binarnom operacijom grupa izometrija, u oz-
naci(1z(E?),0).

Teorem4 Neka je 1ZF) = {f €1z(E?): f(F)=F},
gdje je F figura Euklidske ravnine’E Tada je(Iz(F),o)
je grupa simetrija figure F.

Kako bi u Escherovim grafikama prepoznali izometrije
definiramo poplocavanije.

Definicija 9 Poplctavanije je razdioba (particija) ravnine
na disjunktne skupove H € N Cija unija daje cijelu ravn-
inu.

e Uzorak u ravnini je figura, koja je u Escherovim
grafikama oblika zivotinje. Uzorak preslikavamo u samog
sebe i pomotu izometrija ravnine: rotacija, simetrija, kl-
iznih simetrija, translacija.

e Osnovni uzorake dio uzorka sa svojstvom da skup uzo-
raka ugrupi izometrijaprekriva ravninu. Drugim rijec¢ima,
osnovnim uzorkom poplo¢avamo ravninu.

o Generirajlte podrije je dio osnovnog uzorka Cije slike
u grupi simetrija uzorka poplo€avaju ravninu.

Na slici 5 prikazan je uzorak konja, osnovni uzorak (crveni
paralelogram) i generirajuce podrucje (zuti trokut).

Ex g ]

Slika 5: Primjer generirajliteg podritja

Sliedeti teorem daje Kklasifikaciju ravninskih grupa
simetrija ([1], [8]). Dokaz je izostavljen i moze se naci
ul9].

Teorem 5 (Barlow, Fedorov, Scbnflies-1891)
Postoji samdl7 mogLEih ravninskih grupa simetrija.

Tih sedamnaest grupa poznate su i kao ravninske grupe
kristalografije. Pomocu njih, kristalografi sistematiziraju
kristale ([2]). Ravninske grupe simetrija odgovaraju
sedamnaest nacina poplo€avanja ravnine. U Escherovim
grafikama se mogu razmatrati vrlo vjeSta i zanimljiva
poplotavanja.

Napomena 1 Broj n ozn&ava stupanj rotacije. Rotacija
za kutﬁ ima stupanj rotacije n.

Naziv Osnovni uzorak Stupanj Klizna Generirajuce Znacajke
rotacije simetrija podrucje uzorka

pl paralelogram 1 / cijela povrsSina translacija

p2 paralelogram 2 / 1/2 povrsine 4 rotacije za 180

pm Cetverokut 1 / 1/2 2 osne simetrije

pmm Cetverokut 2 / 1/4 2 osne simetrije

pPg Cetverokut 1 da 1/2

pgg Cetverokut 2 da 1/4

pmg Cetverokut 2 da 1/4 osi simetrije su paralelne

cm romb 1 da 1/2

cmm romb 2 da 1/4 osi simetrije su okomite

p4 kvadrat 4 / 1/4

p4m kvadrat 4 da 1/8 centar rotacije je na osi
simetrije

p4g kvadrat 4 da 1/8 centar rotacije nije na osj
simetrije

p3 Sesterokut 3 / 1/3

p3ml Sesterokut 3 da 1/6 centar rotacije je na osi
simetrije

p31m Sesterokut 3 da 1/6

p6 Sesterokut 6 / 1/6

pém Sesterokut 6 da 1/2

Tablica 1: Klasifikacija ravninskih grupa simetrijgpreuzeto iz [7] )
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4  Primjeri Escherovih grafika

U ovom poglavlju detaljno razmatramo Escherove grafike.
Poznavajuti sustav 17 ravninskih grupa simetrija, Escher
je otkrio svoj sistem "grupirajucih plocica”. Njegove
grafike poplotavanja odgovaraju pet od sedamnaest Fe-
dorovih grupa simetrija. Na sljede€im primjerima uzorci
su likovi Zivotinja.

Na slici 6, dan je primjer ravninske grupe simetrija

i detaljan prikaz svojstava ravninske grupe simetpja
Uzorak grafike je patka. Osnovni uzorak je paralelogram
oznacen crvenom bojom. Generirajuce podrucje je ekviva-
lentno osnovnom uzorku. Osnovni uzorak se translatira u
smjeru okomitom na stranice paralelograma. Dakle, radi se
o translacijama paralelograma koje €ine grupu s obzirom
na kompoziciju. Kod detaljnog prikaza osnovni uzorak i
generirajuce podrucje su paralelogram pomocu kojeg se
generira (poplocava ravnina) motiv oblika sldva S i e

Slika 7: Escher drawing no8 i vizualna reprezentacija
p2 grupe simetrija

Na slici 8 je Escherova grafikascher drawing no109 s
istaknutim osnovnim uzorkom crvene boje. Generirajute
podrucje uzorka je oznaceno zutom bojom. Vertikalno se
translatira z% duljine krace stranice te se transformira kl-
iznom simetrijom na lijevu i desnu stranu. Kod ravninske
grupe simetrijgog generirajuce podrucje j% povrsine os-
novnog uzorka.

—
— —
— — —_
Slika 6: Escher drawing no. 128 i vizualna
reprezentacija f grupe simetrija
Slika 7 predstavlja grupu simetrija2. Osnovni uzorak je - - - -
paralelogram oznacen crvenom bojoidiutom bojom je — — — —
istaknuto generirajuce podrucje osnovnog uzorka. Gener- — — —
irajuce podrucje se transformira rotacijom za 18@atim — L —
translatira u smjeru rubova osnovnog uzorka. Detaljnija - — -

reprezentacija dana je na istoj slici gdje je generiran mo-
tiv oblika slovalL. Znak elipse oznacava rotaciju generi-
rajuceg podrucja (u ovom slucaju radi s% @ovrsine os-
novnog uzorka). Stupanj rotacije je 2, tj. rotacijaza®l80 Slika 8: Escher drawing no. 109 i vizualna
reprezentacija pg grupe simetrija
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Slika 9 daje uvid u grupu simetrijpgg. Znak elipse  puta, u smjeru kazaljke na satu. Zatim se translatira, ver-
oznaCava rotaciju generirajuteg podrucja uzorka za.180 tikalno i horizontalno, za duljinu stranice osnovnog uzorka
Generirajute podrucje je istaknuto crvenom bojom. Grupa (kvadrat). Radi lakSeg razumijevanja ravninske grupe
pggsadrzi izometrije: rotaciju i kliznu simetriju. Generi- simetrijap4 koristi se i alternativni naziv, "grupa simetrija
rajuce podrucje se rotira za 180zatim transformira ver- s obzirom na translaciju”.

tikalno, kliznom simetrijom. Ova metoda slijedi iz Defini-
cije 6, Definicije 8 i svojstva izometrija.

— — — —
L - L
I — [ I
L —4 L
I — [ I

L L L
I I I I

Slika 9: Mizualna reprezentacija pgg grupe simetrija

Slika 10 predstavlja grupp4. Uzorak grafike je gusSter.
Crvenom bojom je oznacen osnovni uzorak, a zutom
bojom generirajute podrucje uzorka. Ravninska grupa
simetrija p4 sadrzi izometrije: rotaciju i translaciju. Na
detaljnijoj reprezentaciji prikazan je manji Cetverokut koji
(uz istaknuto generirajuce podrucje) oznacava rotaciju zZasjika 10: Escher drawing no15i vizualna reprezentacija
90°. Generirajuce podrucje se transformira rotacijom, tri p4 grupe simetrija
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should be written in Croatian, English or German. The paperge not been published or submitted for publication
elsewere.

The manuscript with wide margines and double spaced shauebt in PDF format via e-mail to one of the editors:

Sonja Gorjanc Ema Jurkin
sgorjanc@grad.hr ema.jurkin@rgn.hr

The first page should contain the article title, author armutivor names, affiliation, a short abstract in English, teolis
keywords and the Mathematical subject classification.

UPON ACCEPTANCE. After the manuscript has been accepted for publicationcasthre requested to send its LaTex file
via e-malil to the address:

sgorjanc@grad.hr

Figures should be included in EPS or PS formats and titleth&yiggure number that match to the figure number in the text
of the paper.

The corresponding author and coauthors will recieve hapiesmf the issue free of charge.

UPUTE ZA AUTORE

PODRUCJE. “KoG” objavljuje znanstvene i stru¢ne radove iz podrugg@metrije, primijenjene geometrije i racunalne
grafike.

UPUTSTVA ZA PREDAJU RADA . Znanstveni radovi trebaju biti napisani na engleskom gnmackom jeziku, a strucni na
hrvatskom, engleskom ili njemackom. Rad ne smije biti eljga niti predan na recenziju u drugim ¢asopisima.

Rukopis sa Sirokim marginama i dvostrukim proredom Ssé¢jas PDF formatu elektronskom postom na adresu jedne od
urednica:

Sonja Gorjanc Ema Jurkin
sgorjanc@grad.hr ema.jurkin@rgn.hr

Prva stranica treba sadrzavati naslov rada, imena aukoaitora, podatke o autoru i koautorima, saZetak na tkvat$
engleskom, klju¢ne rijeci i MSC broj.

Po PRIHVA CANJU RADA. Tekst prihvatenog rada autor dostavlja elektronskontgmokao LaTeX datoteku, a slike u
EPS ili PS formatu (s nazivima koji odgovaraju rednom brdikesu tekstu ¢lanka) na adresu:

sgorjanc@grad.hr

Svaki autor i koautor dobiva po jedan primjerak Casopisa.








