SCIENTIFIC:PROFESSIONAL JOURNAL OF CROATIAN SOCIETY
FOR GEOMETRY AND GRAPHICS



Ke@

Official publication of the Croatian Society for Geometryda@raphics publishes scientific and professional papers
from the fields of geometry, applied geometry and computaplgjics.

Founder and Publisher
Croatian Society for Geometry and Graphics

Editors

SONJA GORJANG, Faculty of Civil Engineering, University of Zagreb, Cr@afEditor-in-Chief)

EmA JURKIN, Faculty of Mining, Geology and Petroleum Engineering,uénsity of Zagreb, Croatia (junior editor)
JELENA BEBAN-BRKIC, Faculty of Geodesy, University of Zagreb, Croatia

MARIJA SIMI &, Faculty of Architecture, University of Zagreb, Croatiar{jor editor)

Editorial Board

SONJA GORJANC, Faculty of Civil Engineering, University of Zagreb, Cr@at

EMIL MOLNAR, Institute of Mathematics, Tehnical University of Budaipégingary
OTT70 ROSCHEL, Institute of Geometry, Tehnical University of Graz, Auetr
HELLMUTH STACHEL, Institute of Geometry, Tehnical University of Vienna, Aus
ANA SLIEPCEVIC, Faculty of Civil Engineering, University of Zagreb, Criat
NIKOLETA SUDETA, Faculty of Architecture, University of Zagreb, Croatia
VLASTA SzirRoviCzA, Faculty of Civil Engineering, University of Zagreb, Craat
VLASTA SEURIE - CUDOVAN, Faculty of Geodesy, University of Zagreb, Croatia
GUNTER WEISS Institute of Geometry, Tehnical University of Dresdeny@any

Design
Miroslav Ambrus-Kis

Layout
Sonja Gorjanc, Ema Jurkin

Cover
Georg Glaeser'Reflecting Beauty”, photography(A jellyfish photographed in Kravjatica bay on the islandofnat)

Print
“O-TISAK”, d.o.0., Zagreb

URL address

http://mwww.hdgg.hr/kog
http://hrcak.srce.hr

Edition
150

Published annually

Guide for authors
Please, see the last page.

KoG is cited in: Mathematical Reviews, MathSciNet, Zentratbiiar Mathematik

This issue has been financially supported by The Ministryoidige, Education and Sport of the Republic of Croatia.



ISSN 1331-1611

No. 14

__\ Zagreb, 2010
»

SCIENTIFIC AND PROFESSIONAL JOURNAL OF
CROATIAN SOCIETY FOR GEOMETRY AND GRAPHICS

)l

CONTENTS

REVIEW

Norman John WildbergetUniversal Hyperbolic Geometry Il: A pictorial overview..... ..............ccovvnnn.. 3

ORIGINAL SCIENTIFIC PAPERS

Ana Sliegevt, Ema Jurkin Snails in Hyperbolic Plane. . ... ...t e e 25
Marta Szihasi-Nagy Surface Patches Constructed from CurvatureData. ...t 29
Janos Pallagi, Benedek Schultz, de®zirmai

Visualization of Geodesic curves, Spheres and EquidiSarfaces irs? xRSpace.............oovieeineenn... 35
Tibor Désa Equidistant-, Own-Equidistant- and Self-Equidistantrs in the Euclidean Plane................ 41

Sonja Gorjanc, Tibor Schwarcz, Méd Hoffmann
On Central Collineations which Transforma Given ConiCtoi@I€. . ............ .. 47



ISSN 1331-1611

BROJ 14
Zagreb, 2010

<

ZNANSTVENO-STRUCNI CASOPIS
HRVATSKOG DRUSTVA ZA GEOMETRIJU | GRAFIKU

SADRZAJ

PREGLEDNI RAD

Norman John WildbergetUniverzalna hiperbolicka geometrija Il: slikovnipregl............................. 3

[ZVORNI ZNANSTVENI RADOVI

Ana Sliegevc, Ema Jurkin Puzevi u hiperboliCkojravnini.......... ..o immn i e 25
Marta Szihasi-Nagy Dijelovi plohe konstruirani iz podataka o zakrivljenosti............... .. ..., 29
Janos Pallagi, Benedek Schultz, de®zirmai

Vizualizacija geodezijskih krivulja, sfera i ekvidistaitt ploha u prostor® xR ...........ooveiiniiieineen... 35
Tibor Désa Ekvidistantne, vlastito-ekvidistantne i svojstvenoselistantne krivulje u euklidskoj ravnini.. ... ... 41

Sonja Gorjanc, Tibor Schwarcz, Méd Hoffmann
O perspektivnim kolineacijama koje danu koniku preslifawakruznice ... 47



KoG-14-2010

N. J. Wildberger: Universal Hyperbolic Geometry Il: A picial overview

Review
Accepted 24. 11. 2010.

NORMAN JOHN WILDBERGER

Universal Hyperbolic Geometry II:

A pictorial overview

Universal Hyperbolic Geometry IlI:
A pictorial overview

ABSTRACT

This article provides a simple pictorial introduction to uni-
versal hyperbolic geometry. We explain how to under-
stand the subject using only elementary projective geom-
etry, augmented by a distinguished circle. This provides a
completely algebraic framework for hyperbolic geometry,
valid over the rational numbers (and indeed any field not
of characteristic two), and gives us many new and beauti-
ful theorems. These results are accurately illustrated with
colour diagrams, and the reader is invited to check them
with ruler constructions and measurements.

Key words: hyperbolic geometry, projective geometry, ra-
tional trigonometry, quadrance, spread, quadrea

Univerzalna hiperbolitka geometrija Il:
slikovni pregled

SAZETAK

Clanak pruza jednostavan slikovni uvod u univerzalnu
hiperboli¢ku geometriju. Objasnjava se kako razumjeti
sadrzaj koriste¢i samo osnovnu projektivhu geometriju,
prosirenu jednom istaknutom kruznicom. Na taj se nadin
dobiva potpuno algebarski okvir za hiperboli¢ku geome-
triju, koji vrijedi nad poljem racionalnih brojeva (i u biti
nad bilo kojim poljem karakteristike razli¢ite od 2) i daje
mnoge nove lijepe teoreme. Ovi su rezultati prikazani
crteZima u boji, a &itatelj je pozvan provjeriti ih konstruk-
tivno i racunski.

Kljuéne rijeci: hiperboli¢ka geometrija, projektivna geo-
metrija, racionalna geometrija, kvadranca, $irina, kvadrea

MSC 2010: 51M10, 14N99, 51E99

1 Introduction etry. The reader is encouraged to verify theorems by mak-
ing explicit constructions and measurements; aside from a
This paper introducdsyperbolic geometrysing only ele-  single base (null) circle, with only a ruler one can check
mentary mathematics, without any analysis, and in particu- most of the assertions of this paper in special cases. Alter-
lar without transcendental functions. Classical hypedbol natively a modern geometry program such as The Geome-
geometry, (see for example [6], [7], [8], [9], [10], [11], ter's Sketchpad, C.A.R., Cabri, GeoAlgebra or Cinderella

[15], [17], [23]), is usually an advanced topic studied in illustrates the subject with a little effort.

the senior years of a university mathematics program, of- or approach extends the classi€alyley Beltrami Klein
ten built up from a foundation of differential geometry. In projective model of hyperbolic geometry, whose un-

recent years, a new, simpler and completely algebraic un-gerying space is the interior of a disk, with lines being
derstanding of this subject has emerged, building on thegyaight line segments. In our formulation we consider also
ideas ofrational trigonometry([18] and [19]). This ap-  he houndary of the disk, which we call thall circle, also
proach is callediniversal hyperbolic geometrpecause it ints outside the disk, and also points at infinity. Thedine
extends the theory to more general settings, namely to ar4,e now complete lines in the sense of projective geome-
bitrary fie!ds (usually characte_ristic not two), and beeaus try, not segments, and include alsall lineswhich are tan-

it generalizes to other quadratic forms (see [21]). gent to the null circle, and lines which do not meet the null
The basic reference idniversal Hyperbolic Geometry I:  circle, including the line at infinity. This orientation ia-f
Trigonometry([22]), which contains accurate definitions, miliar to classical geometers (see for example [2], [3], [4]
many formulas and complete proofs, but no diagrams. This[5], [14]), but it is not well-known to students because of
paper complements that one, providing a pictorial intro- the current dominance of the differential geometric point
duction to the subject with a minimum of formulas and no of view. A novel aspect of this paper is that we introduce
proofs, essentially relying only on planar projective geom our metrical concepts-guadrancespreadandquadrea—
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purely in projective terms. It means that only high school also are specified by homogeneous coordinates, now of the
algebra suffices to set up the subject and make computaform (a: b: c), with the pairing between the poipt: y : Z
tions. The proofs however rely generally on computer cal- and the linga: b: c) given by

culations involving polynomial or rational function idént
ties; some may be found in ([22]), others will appear else-

where. This particular relation is the characterizing equation fo
Many of the results are illustrated with two diagrams, one hyperbolic geometry; for spherical/elliptic geometry & di
illustrating the situation in the classical setting usintgi ferent convention between points and lines is used, where
rior points of the null circle, and another with more general the line (a:b:c) passes through the poifit:y: 7 pre-
points. The fundamental metrical notionsppfadrancebe- cisely whenax+ by+ cz= 0. Note that we use round
tween points andpreadbetween lines are undefined when brackets for lines in hyperbolic geometry.

null points or null lines are involved, but most theorems e will visualize the projective plane as an extension of the
involving them apply equally to points and lines interior or - affine plane, with the usual property that any two distinct
exterior of the null circle. The reader should be aware that pointsa and b determine exactly one line which passes
in more advanced work the distinction between these two through them both, called thein of a andb, and denoted
types of points and lines also becomes significant. Insteadby ab, and with thenewproperty that any two linek and

of area of hyperbolic triangles, we work with a rational M determine exactly one point which lies on them both,
analog calledjuadrea called themeetof L andM, and denoted biM.

With this algebraic approach we can develop geometry In projective geometry, the notion of parallel lines disap-
over therational numbers—in my view, always the most  pears, since nowanytwo lines meet. Familiar measure-
important field. The natural connections between geome-ments, such as distance and angle, are also absent. It is
try and number theory are then not suppressed, but enrichreally thegeometry of the straightedge

both subjects. Later in the series we will also illustrate hy - pegpjte jts historical importance, intrinsic beauty and-si
perbolic geometry ovelinite fields.in the direction of [1]  yjicity projective geometry is these days sadly neglected
and [16], wherecountingbecomes important. in the school and university curriculum. Perhaps the wider
realization that it actually underpins hyperbolic geometr
will lead to a renaissance of the subject! Most readers will
know the two basic theorems in the subject, which are il-
lustrated in Figure 1.

ax+by—cz=0. (1)

2 The projective plane

Hyperbolic geometry may be visualized as the geometry of
the projective plane, augmented by a distinguished carcle
(in fact a more general conic may also be used). Since pro-
jective geometry is not these days as familiar as it was in
former times, we begin by reviewing some of the basic no-
tions. The starting point is the affine plane—familiar from
Euclidean geometry and Cartesian coordinate geometry—
containing the usual poin{g,y] and (straight) lines with
equationsx+ by= c. The affine plane is augmented by in-
troducing anew pointfor every family of parallel lines. In
this introductory section we ugarallel in the usual sense
of Euclidean geometry, so that the lines with equations
aix +bry = ¢, and &+ bpy = ¢, are parallel precisely  rigyre 1: Theorems of Pappus and Desargues

whena by — apb; = 0. Later on we will see that there is a

different, hyperbolic meaning of ‘parallel’ (which is dfi- Pappus’ theorenasserts that if;, a» andag are collinear,
ent from the usage in classical hyperbolic geometry!) The and by, b, and bs are collinear, thenx; = (azbs) (agh),
new point, one for each family of parallel lines, ispint X2 = (agby) (a1bg) and x3 = (aghy) (agby) are collinear.

at infinity. We also introduce onaew line the ‘line at Desargues’ theorenasserts that ifyb;, agh, and agbs
infinity’, which passes through every point at infinity. are concurrent, then = (axag) (b2bs), X2 = (agaz) (bsby)
Algebraically the projective plane may be defined with- @ndxs = (aia2) (bibz) are collinear. This is often stated in
out reference to the Euclidean plane, with points specified the form that if two triangles are perspective from a point,
by homogeneous coordinates, or proportions, of the form then they are also perspective from a line.

[x:y:Z. Points[x:y:1] correspond to the affine plane, A further important notion concerns four collinear points
and points at infinity are of the forrix:y: 0]. The lines a,b,candd on a lineL, in any order. Suppose we choose

4
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affine coordinates ob so that the coordinates afb,cand 3  Duality via polarity
d are respectively,y,zandw. Then thecross-ratiois de-
fined to be the extended number (possik)ygiven by the We are now ready to introduce thgyperbolic plane,

ratio of ratios: which is just the projective plane which we have just been
describing, augmented by a distinguished Euclidean cir-

(ab:cd)= (ic) / (a;d) . cle cin this plane, called thaull circle, which appears in

b—c b—d our diagrams always in blue. The points lying ohave

o ) ] ] a distinguished role, and are calledll points. The lines
This is independent of the choice of affine coordinates on tangent toc have a distinguished role, and are calted!

L. lines.

All other points and lines, including the points at infin-
ity and the line at infinity, are for the purposes of ele-
mentary universal hyperbolic geometry treated in a non-
preferential manner. In particular we @t restrict our
attention to onlyinterior points lying inside the circlec;
this is a big difference with classical hyperbolic geome-
try; exterior points lying outside the circle are equally im-
Figure 2: Projective invariance of cross-ratio: portant. Similarly we daot restrict our attention to only
(ab:c,d)=(a,b1:c,d1) interior lines which meetc in two points;exterior lines
which do not meet are equally important. Note also that
Moreover it is also projectively invariant, meaning that if hese notions can be defined purely projectively once the
a1, b1, ¢y andd; are also collinear points on alimg which  ny| circle ¢ has been specified: interior points do not lie
are perspective ta,b,c andd from some pointp, as in  on null lines, while exterior points do, and interior lines
Figure 2, ther(a,b: c,d) = (a1,b1 : ¢1,ch). pass through null points, while exterior lines do not.

The cross ratio is the most important invariant in projec- For those who prefer to work with coordinates, we may
tive geometry, and will be the basis gfiadrancebetween choose our circle to have homogeneous equationy? —
points andspreadbetween lines, but we give also analytic 22 = 0, or in the planez= 1 with coordinate¥ = x/zand
expressions for these quantities in homogeneous coordivy = y/z simply the unit circlex? + Y2 = 1.

nates; both areational functionsof the inputs. The actual The presence of the distinguished null circléas as its

v_alues assumed by the cross-r_atlo depend _uItlrpa_ter on _themain consequenceamplete dualitypetween points and
field over which our geometry is based, which is in princi-

. . . . lines of the projective plane, in the sense that every point
ple quite arbitrary. To start it helps to restrict our atient

o the rational bers i iably th ¢ natural. f a has associated to it a particular liné and conversely.
0 therational numbers invariably the most natural, 1a- — ;g duality is one of the ways in which universal hyper-

miliar and !mpo_rte}nt field. So we wil ado_pt a scientific bolic geometry is very different from classical hyperbolic
approach, identifying our sheet of paper with (part of) the geometry, and it arises from a standard construction in pro-
rational number plane jective geometry involving the distinguished null circle-
Here are a few more basic definitions. side aja; = the notion ofpolarity. How polarity defines duality is cen-
{a1,a,} is a set of two points. AertexLiL, = {L1,Lo} is tral to the subject.

a set of two lines. Acoupleal = {a,L} is a set consisting
of a pointaand a lineL. A triangle agazaz = {a1,a2,a3}

is a set of three points which are not collineartridateral
Lilols = {L1,L2,L3} is a set of three lines which are not
concurrent. Every trianglaiazaz has three sides, namely
a1a;, aag andagaz, and similarly any trilateral;L,L3
has three vertices, namdlyl 5, LoL3 andL;L3.

Since the points of a triangle and the lines of a trilat-
eral are distinct, any triangl@azaz determines amsso-
ciated trilateral L1LoL3 wherel; = ayas, Lo = ajaz and

Lz = ajap. Conversely any trilaterdl;L,L 3 determines an
associated triangleagazaz wherea; = Lols, a» = Lil3
andag = L1L,. Figure 3: Duality and pole-polar pairs
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To define the polar of a poirwith respect to the null cir-  brackets to the other! This explains why we chose the hy-
cle c, draw any two lines through which each both pass perbolic form of the pairing (1).

throughc in two distinct points, sayr,p andy,d respec- |, yhe previous section we saw that every triar@iaag
tively; this is always possible. Now here is a beautiful fact has an associated trilatef@L,L3 and conversely. Now

from projective geometryt d andeare the othertwo diag- e see that there is another natural trilateral associated t
onal points of the quadrilaterayd, thenthe line de does araz3s, namely thelual trilateral a; ajad . Conversely to

nqt depend on the two chosen IT.es througbl_a only on any trilateralL1L,L3 there is associated tttrial triangle
a itself. So we say thale= A= a— is thedual line of the [T
1253

pointa, and converselg = A* is thedual point of the line
A

The picture is as in Figure 3, showing two different possi-
ble configurations for which the above prescriptions both
hold. In casea is external to the circle, it is also possible
to constructA = a' from the tangents to the null circle
passing through as in Figure 4, but this does not work for
an interior point such as

The construction shows that there is in fact a symmetry be-
tween the initial pointa and the diagonal pointd ande,

so that if we started with the poidt its dual would be the
line ae and if we started with the poirg its dual would

be the pointd. So this shows another fundamental fatt:

d lies on the dual & of the point athen a lies on the dual

d* of the pointd

So to invert the construction, given a lie choose two
pointsd ande on it, find the dual linesl- ande’, and
definea= A" =d'e". Itis at this point that we need the
projective plane, with its points and line at infinity, for if
d!+ ande’ were Euclidean parallel, theh-e" would be a
point at infinity. This situation occurs if we take our line
A to be a diameter of the null circle in the sense of Eu-
clidean geometry.

Figure 5:A triangleazazaz and its dual trilateralA; A2A3

We also say that a coup#a. is dual precisely whera and
L are dual, and is otherwigen-dual.

So to summarizein (planar) universal hyperbolic geom-
etry, duality implies that points and lines are treated com-
pletely symmetrically This is a significant departure both
from Euclidean geometry and from classical hyperbolic
geometry—in both of those theories, points and lines play
quite different roles. In universal hyperbolic geometing t
above duality principle implies that every theorem can be
dualized to create a (possibly) new theorem. We will state
What happens when the poiatis null? In that case the  many theorems together with their duals, but to keep the
quadrilateral in the above construction degeneratesf@ndt |ength of this paper reasonable we will not extend this to
polar linea is the null line tangent to the null circle at g the theorems; the reader is encouraged to find state-

So every null line is dual to the unique null point which - ments and draw pictures of the dual results in these other
lies on it, as shown also in Figure 4. cases.

4 Perpendicularity

The notions of perpendicular and parallel differ dramati-
cally between Euclidean and hyperbolic geometries. In the
affine geometry on which Euclidean geometry is based, the
notion of parallel linesis fundamental, whil@erpendicu-

lar lines are determined by a quadratic form. In hyper-
bolic geometry, the situation is reversed—perpendictylari

is more fundamental, and in fact parallelism is defined in
terms of it!

Figure 4:Null pointsa, 3 and their dual null lines

The duality between points and lines is surprisingly simple Another novel feature is that perpendicularity applies not
to describe in terms of homogeneous coordinates. The poleonly to lines, butalso to points This is a consequence of
of the pointa= [x:y:7] is just the linea: = (x:y:2), the fundamental duality we have already established be-
so duality amounts to simply changing from one kind of tween points and lines.

6
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Figure 6: Perpendicular points and lines

Perpendicularity in the hyperbolic setting is easy to intro
duce once we have duality. We say that a pabiig per-
pendicular to a pointa precisely wherb lies on the dual
line a* of a. This is equivalent t@ lying on the dual line
b’ of b, so the relation is symmetric, and we write

alh.

Dually a lineL is perpendicular to a lin®l precisely when
L passes through the dual poMt- of M. This is equiva-
lent to M passing through the dual poibt of L, and we
write

LLM.

Figure 6 shows our pictorial conventions for perpendicu-
larity: the line A is dual to the poinf, so pointsb,c and

d lying on A are perpendicular ta, and this is recorded
by a small (right) corner placed on the join of the perpen-
dicular points, and between them. Also the likes and

M pass througta, so are perpendicular t4, and this is

recorded as usual by a small parallelogram at the meet o

the perpendicular lines.

Figure 7: Altitude line N and altitude point n of a couple
aL

and we say the triangle dual. A triangle isnon-dual
precisely when each of its points is not dual to the opposite
line. Similar definitions apply to trilaterals.

Somewhat surprisingly, the next resultist truein classi-

cal hyperbolic geometry—a very conspicuous absence that
too often goes unmentioned in books on the subject! The
reason is that the orthocenter of a triangle of interior f®in
might well be an exterior point, as the left diagram in Fig-
ure 8 shows. The absence of a distinguished orthocenter
partially explains why the study of triangles in classical
hyperbolic geometry is relatively undeveloped. With uni-
versal hyperbolic geometry, triangle geometry entersha ric
new phase.

Theorem 2 (Orthocenter and ortholine) The  altitude
lines of a non-dual triangle meet at a unique point o,
called theorthocenter of the triangle. The altitude points
of a non-dual trilateral join along a unique line O, called
1Ihe ortholine of the trilateral. The ortholine O of the dual
trilateral of a triangle is dual to the orthocenter o of the
triangle.

Our first theorem records two basic facts that are obvious

from the definitions so far.

Theorem 1 (Altitude line and point) For any non-dual
coupleaL, there is a unique line N which passes through a
and is perpendicular to Lnamely N= al", and there is a
unique point n which lies on L and is perpendicular to a
namely n= a’L. Furthermore N and n are dual.

We callN the altitude line to L througha, andn the al-
titude point to aonL. In casea andL are dual, any line
througha is perpendicular td., and any point lying or.

is perpendicular ta. While the former idea is familiar, the
latter is not. Figure 7 shows that if we restrict ourselves
to the inside of the null circle, altitude points are invisib

so it is no surprise that the concept is missing from classi-
cal hyperbolic geometry. Remember that we are obliged to

respect the balance which duality provides us!

If a triangleazazaz has saye; dual toazas, then any line
througha; will be perpendicular to the opposite limeas,

Figure 8: Orthocenter o and ortholine O of a triangle
arazaz and its dual trilateral

Figure 8 shows a triangiazag, its dual trilateral with as-
sociated trianglé;l»l3, and the corresponding orthocenter
o and ortholineD.
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5 Null points and lines

In modern treatments of hyperbolic geometry, points at in-
finity have a somewhat ambiguous role, and what we call
null lines are rarely discussed, because they are es$gntial
invisible in the Beltrami Poincaré models built from diffe

ential geometry. However earlier generations of classical
geometers were well aware of them (see for example [14]).

In universal hyperbolic geometry null points and null lines L
play a particularly interesting and important role. Herais  Figure 10: Triply right diagonal trianglee fg
first example, whose name comes from the definition that

a triangle istriply nil precisely when each of its points is

null. 6 Couples, parallels and bases

Theorem 3 (Triply nil altitudes) Suppose thatai, o Points and lines are the basic objects in planar hyperbolic
andagz are distinct null points, with b any point lying on  geometry. Given one poir&, we may construct its dual
aiaz. Then the altitude lines taya3 andazag through b line A= a*, and conversely given a lin&@ we may con-

are perpendicular. struct its dual poina = Al. After that, there is in general

nothing more to construct. For two objects, namely cou-
ples, sides and vertices, the situation is considerablyemor
interesting, and gives us a chance to introduce some im-
portant additional concepts.

Given a non-dual couplal we know we can construct the
dual lineA= a' and the dual poirit= L+, and the altitude
line N and the altitude poimt. Now we introduce another
major point of departure from classical hyperbolic geome-
try, which provides an ironic twist to the oft-repeated his-
tory of hyperbolic geometry as a development arising from
Euclid’s Parallel Postulate.

Figure 9: The Triply nil altitudes theorem: bl bl,

Figure 9 shows that the Triply nil altitudes theorem may
be recast in projective terms:lif, |2 andl3 are the poles of
the lines of the triangl@r 0203 with respect to the conic
¢, then the pointgasas) (bly) = (blo)", (az03) (blz) =
(bly)* andls are collinear.

Theorem 5 (Parallel line and point) For any non-dual
coupleaL there is a unique line P which passes through
a and is perpendicular to the altitude line N af, namely
P=a(a'L), andthereis a unique point p which lies oh a
and is perpendicular to the altitude point n af, namely

In keeping with triangles and trilaterals, a (cyclic) set of ,— 41 (aL'). Furthermore P and p are dual.
four points is called ayjuadrangle, and a (cyclic) set of

four lines aquadrilateral. The next result restates some
facts that we already know about polarity of cyclic quadri-
laterals in terms of perpendicularity.

Theorem 4 (Nil quadrangle diagonal) Suppose that
01,02,03 and a4 are distinct null points, with diago-
nal points e= (ai02) (az04), f = (ai03)(0204) and
g = (a104) (0203). Then the lines efeg and fg are mu-
tually perpendicular, and the points £ and g are also
mutually perpendicular.

In classical hyperbolic geometry the null poits, a2, 03
andayg would be considered to be ‘at infinity’, while the
external diagonal point andg in Figure 10 would be in-
visible. Let us repeatfor us internal and external points
are equally interesting.

Figure 11: Parallel line P and parallel point p of the
coupleal

8
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The lineP is the parallel line of the coupleal, and the The pointsb; and b, are theconjugate points of the
point p is the parallel point of the coupleal. These are  side a;a@;. The duals of these points are the linBs =

shown in Figure 11. We may also refer Boas thepar- al(alaz)L andB; = a, (alaz)l, which are theconjugate
allel line to the line L through a. This is how we will lines of the sideazaz. These relations are involutory: if the
henceforth use the terparallel in universal hyperbolic  sideb;b, is conjugate to the sidaraz, thenara; is also
geometry—we do not say th&ato lines are parallel conjugate tdby.

Theorem 6 (Base point and line) For any non-dual cou-
ple aL there is a unique point b which lies on both L and
the altitude line N o, namely b= (aL*)L, and there

is a unique line B which passes through both &nd the
altitude point n ofalL, namely B= (a*L) L*. Furthermore

B and b are dual.

The pointb is thebase pointof the coupleaL, and the line

B is the base lineof the coupleal. These are shown in

Figure 12. Figure 13: Conjugate points and conjugate lines of the
sideajaz

The same picture can also be reinterpreted by starting with
avertex.

Theorem 8 (Vertex conjugate points and lines)For any
vertex A;A; which is not both nil and null, there is a
unique line B = (AlAg)Af which passes through;A;
and is perpendicular to A and there is a unique line
B2 = (A1A2) A} which passes throughiA; and is per-
pendicular to A.

The linesB; and By are theconjugate linesof the ver-
tex AtAx. The duals of these lines are the poitks=
A1 (A1A2)* andby = Az (A1A2)*, which are theonjugate
7 Sides, vertices and conjugates points of the vertexAA,. This relation is also involutory:

if the vertexB1By is conjugate to the verte&A; Ay, then
There are also constructions for sides and vertices, and in1A2 is also conjugate t8,B,. This is shown also in Fig-
fact the complete pictures associated with the general couUre 14, which is essentially the same as Figures 12 and 13.
ple, side and vertex are essentially the same, but with dif-
ferent objects playing different roles.

Figure 12: Base point b and base line B of the cougle

Figure 13 shows the constructions possible if we start with
a sideazaz. Note that in this example one of these points
is internal and one is external. A bit more terminology: we
say that the sidagaz is null precisely wheraja is a null
line, andnil precisely when at least one af, a, is a null
point. The vertex_ 1L, is null precisely wherL;L; is a
null point, andnil precisely when at least one bf, Ly is
anull line.

Figure 14: Conjugate points and conjugate lines of the

Theorem 7 (Side conjugate points and lines For any vertexiAz

sideazaz which is not both nil and null, there is a unique Furthermore the exact same configuration results if we had
pointby = (a1a2) af which lies on aaz and is perpendicu-  started with one of the sideghbsy, or aghs, or b1bs, or with

lar to a1, and there is a unique poingb= (a1az) af which one of the verticed\1B,, or A;B;, or B1B,. However if

lies on aa and is perpendicular toa we had started with aight side, meaning that the two

9
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points are perpendicular, suchad,, then we would ob-
tain L = a;b; and its dual point. But then the conjugate
side ofa;b; would coincide witha; by, and similarly the
conjugate vertex of a right vertex such /&g, would co-
incide withA;Bs.

8 Reflections

The basic symmetries of hyperbolic geometry saftec-
tions, but they have a somewhat different character from
Euclidean reflections. Hyperbolic reflections send points
to points and lines to lines, preserving incidence, in other
words they argrojective transformationsThere are two
seemingly different notions, the reflectian in a (non-
null) pointa, and the reflectiow in a (non-null) lineL. It
is an important fact that these two notions end up agreeing,
in the sense that

Oa = 0A

whenA = at.

The transformatiow, is defined first by its action on null
points, and then by its action on more general points and
lines.

For a non-null poing, the reflectiono, sends a null point
a to the other null pointt’ on the lineaa. We write

o = 00;.

In caseaa is a null line, in other words a tangent to the
null circle c, thena’ = a. Note that ifa was itself a null
point, then this definition would yield a transformationttha
would send every null point ta, which will not be a sym-
metry in the sense we wish. However such transformations
can still be useful.

Figure 15: Reflection in the point a or the dual linesAa*

Once the action of a projective transformation on null

points is known, it is determined on all points and lines,

first of all on lines through two null points, and then on an

arbitrary point by means of two such lines passing through
it, and then on arbitrary lines. Figure 15 shows the reflec-
tion o, and its action on a poirt to getc = boy,. First find

10

a line throughb meeting the null circle at poinfy andp,,
then construcyy = 10, andy1 = 104, and then set

¢ =boa = (ab) (y1y2) -

For the reflectiono, in a line L, the idea is dual to the
above. It is defined first by its action on null lines, and
then by its action on more general points and lines. For a
non-null lineL, the reflectioro. sends a null lin€1 to the
other null linel’ passing through the poihf1. We write

n = Mog.

In casel is a null point,n’ = .

Once the action of a projective transformation on null lines
is known, it is determined on all points and lines, since it
is first of all determined on points lying on two null lines,
and then on an arbitrary line by means of two such points
lying on it, and then on arbitrary points.

Of course there is also a linear algebra/matrix approach
to defining reflections. &= [u: v:w] then the action of

0a =0, Onapointb = [x:y: Z is given by the projective
matrix product

u2 —v2 +w? 2uv 2uw
boa=[x:y:7 2uv —WP V2w 2vw
—2uw —2vw P+ V2 —w?

where the entries are only determined up to a scalar. The
move to three dimensions simplifies the discussion.

9 Midpoints, midlines, bilines and bipoints

The notion of theanidpointof a side can be defined once
we have the notion of a reflection. It also has a metrical
formulation in terms of quadrance, which we have not yet
introduced. There are three other closely related congcepts
that of midling, biline and bipoint Midpoints and mid-
lines refer to sides, while bilines and bipoints refer to-ver
tices. The existence of these objects reduces to questions
in number theory—-whether or not certain quadratic equa-
tions have solutions.

If ¢ = boy then we say is amidpoint of the sidebc. In
this case the poirg= d* (bc) is also a midpoint obc, and
the two midpointsd ande of bc are perpendicular. The
dual lineD = d* is amidline of bc, meaning that it meets
bc perpendicularly in a midpoint, namedy The reflection

op in D of bis alsoc. Similarly the dual lineE = e* is also

a midline ofbc. In Euclidean geometry midlines are called
perpendicular bisectorsin hyperbolic geometry there are
generally either zero or two midpoints between any two
points, and so also zero or two midlines.
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10 Hyperbolic triangle geometry

The richness of Euclidean triangle geometry is not re-

flected in the classical hyperbolic setting, but the situa-

tion is remedied with universal hyperbolic geometry. Here

we give just a quick glimpse in this fascinating direction,

which will be the focus of a subsequent paper in this series
(see also [17]).

m

Figure 16: Midpoints and midlines dfc

Figure 16 shows the midpointsand midlinesM of a side

bc. Figure 17 shows how to construct the midpoints and
midlines of the sidéoc when such exist. For the midpoints
of bc we first joinb andc to the pointa = (bc)" to form
linesM andN. If these are both interior lines, then their
meets with the null circle give a completely nil quadrangle
one of whose diagonal pointsasand the other two diago-
nal pointsd andelie onbcand are the required midpoints.
The duald andE of d anderespectively are the midlines
of bc.

M Figure 18: Circumcenters and circumlines of a triangle

%) aiapas

@/zv Figure 18 shows a trianggazas together with its six mid-

‘ pointsm (one is off the page) and corresponding six mid-
lines M. The midpoints are collinear three at a time on
four linesC calledcircumlines. The midlines are concur-

A rent three at a time on four pointxalledcircumcenters
The circumcenters are dual to the circumlines. Although
we have not defined circles yet, a triangle generally has
zero or four circumcircles, whose centers are at its circum-
centers, if these exist.

¢

Figure 17: Midpoints d and e olbc, or bilines D and E of
MN

The dual notions to midpoints and midlines of sides are the
notions of bilines and bipoints of vertices.Nf andN are
lines andM = Nop then the lineD is abiline of the vertex
MN. In this case the lin&€ = D+ (MN) is also a biline of
MN, and the two biline® andE of MN are perpendicular.

The dual point = D+ is abipoint of MN, and it joinsMN
perpendicularly in a biline, namely. This implies that the
reflectionay in d of M is alsoN. Similarly the dual point
e= E"' is also a bipoint ofMN. In Euclidean geometry,
bilines are called vertex bisectors or angle bisectors. Bi-
points have no Euclidean analog.

Figure 19: Pascal’s theorem via hyperbolic geometry

Figure 17 can equally well be interpreted as illustratirgg th  An important application of circumlines is Rascal’s the-
process of obtaining biline® andE and bipointsd ande orem one of the great classical results of geometry. Fig-
of the vertexVIN. ure 19 shows three lings;, A andAz which meet the null

11
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circle at six null pointxi. The dual points of;, A2 andAg Theorem 11 (Second double point)lf d;d»ds is the dou-
areay,ap andag respectively. The triangl@azasz has six ble triangle of a triangleazazaz, andg10203 is the double
midpointsm (red) and the four circumlines (blue) pass  triangle ofd;d»ds, then the lines &1, axgz and &gz are
through three midpoints each. concurrentin a pointy

Two of the original three lines, such &s andA, deter- These are shown in Figure 24is thedouble point of the

mine four null pointsx, and the other two diagonal points triangleaiazaz, andy is the second double pointof the
formed by such a quadrangle of null points, not including triangleaiasas.

A1A2, give two midpointam, in this case of the sidaras.

So Pascal’'s theorem is here seen as a consequence of the
fact that thesix midpoints of a triangle are collinear three

at a timeforming the circumlines.

The six null pointsa can be partitioned into three sets of
two in 15 ways. By different choices of the linds, A, and

As, there are altogether 15 such diagrams associated to the
same six null points, and 60 possible circumlil@play-

ing the role of Pascal’s line. Such a large configuration has

many remarkable features, some of them projective, some__ _ _ _
of them metrical. Figure 21: First and second double points of a triangle

1383

i It is not the case that the pattern continues in the obvious

11 Parallels and the doubled triangle way: one cannot define a third double point in an analo-
gous way. The study of the double triangle is clearly an

Given a triangleaazag, thedouble triangle didxdz isthe  interesting departure point from Euclidean triangle geom-
triangle whose lines are the paralléls P, andPs to the etry.
linesLy, Ly andLs of azazaz through the pointg;,a; and
as respectively. We retain the usual notational conventions,
so thatd; = P;P; etc. The situation is shown in Figure 20. 12 Quadrance and spread

We now introduce the two basic measurements in univer-
sal hyperbolic geometry, thquadrancebetween points
and thespreadbetween lines. These are analogs of the
corresponding notions in Euclide&ational trigonometry

but we assume no familiarity with this theory (although
for a deeper understanding one should carefully compare
the two). Our definition of quadrance and spread follows
our projective orientation, and is given here in terms of the
cross-ratiobetween four particular points or lines. The im-
Figure 20: A triangleazazaz and its double triangle portance of this cross-ratio was shown in ([3]).

020l Suppose thed; anday are points and thdy; andb, are the
The next theorem is surprising to me, and seems to requireconjugate points of the sid&az, as shown in Figure 22.
a somewhat involved computation. Then define thejuadrance betweena; anda, to be the
cross-ratio of points:

Theorem_ 9 (Double medlan triangle) If didods is the q(a1,a) = (a1, by : @z, by).
double triangle of a triangl@iazaz, then a,a, and & are
midpoints of the sides af d>ds. The quadrancg(as,ay) is zero ifa; = ap. It is negative if

a; anday are both interior points, and approaches infinity

In Euclidean geometry the points in the next two theorems asay or & approaches the null circle. It is undefined (or

would both be the centroid of the triangle. infinite) if one or both oy, a; is a null point. Itis positive
if one of a; anday is an interior point and the other is an

) ) ) exterior point. It is negative if both; anda, are exterior

Theorem 10 (Double point) If d;d>dz is the double trian-  points andasay is an interior line. Itis zero ifua, is a null

gle of a trianglearazag, then the lines gy, axd; and ad3 line. It is positive if botha; anday are exterior points and
are concurrent in a point x aiay is an exterior line.

12
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So the basic duality between points and lines extends to the
two fundamental measurements.

A circle is given by an equation of the forqi(x,a) = k for
some fixed poin& called thecenter, and a numbek called
thequadrance

Here we show the circles centered at a paiif various
guadrances. Figure 23 shows circles centered at a point
whena is an interior point. Figure 24 shows circles cen-
Figure 22: Quadrance defined as cross-ratio: tered at an exterior poiret Both of these diagrams should
q(ag,a) = (a1, bz : @, by) be studied carefully. Note that the dual liae of ais such
a circle, of quadrance Also note that the situation is dra-
Klein model is also defined in terms of a cross-ratio, in- matically diff_erent _fora interipr oraext(_ar_ior. _In the case
volving two other points: the meets ddyap with the null of a an exterior point, there !s a non-trivial circle qf quad-
rance Qnamely the two null lines through and all circles

circle. This is problematic in three ways. First of all for 4 . .
two general points there may be no such meet, and so thdneet the null circle at the two points where the dual fifie

Klein distance does not extend to general points. But evenMe€ts it. In classical hyperbolic geometry such curves are
if the meets exist, it is not easy to separate them a|ge_known asconstant width curves-however from our point

The usual distance (a;,az) betweena; and a; in the

braically to get four points in a prescribed and canonical ©f view they are just circles.
order to apply the cross-ratio. Finally to get a quantity

that acts somewhat linearly, one is forced to introduce a
logarithm or inverse circular function. This is much more

complicated analytically, and makes extending the theory
to finite fields, for example, more problematic.

In any case it turns out that# anday are interior points,
there is a relation between quadrance and the Klein dis-
tance:

q(ag,a2) = —sinkf (d(ag,a2)). (2)

To define the spread between lines, we proceed in a dual_. ) L
fashion. In Figure 22B; andB; are the conjugate lines of Figure 23: Circles centered at a (interior)
the vertexA;A,. Define thespread between the linegy
andA; to be the cross-ratio of lines:

S(A]_,Ag) = (Al, Bo: A2, Bl).

This is positive ifA; andAy are both interior lines that meet
in an interior point. In fact i (A1,A) is the usual angle
betweenA; and A in the Klein model, then it turns out
that

S(A1, Az) = Sir* (8(A1,A2)) . 3)

The relations (2) and (3) allow you to translate the subse-
guent theorems in this paper to formulas of classical hy-
perbolic trigonometry in the special case of interior pgint
and lines.

Figure 24: Circles centered at a (exterior)

There is a dual approach to circles where we use the rela-
The spreacs(A1, Az) between lines\; andA; is equal to  tion S(X, L) = k for a fixed lineL and a variable lin&. We

the quadrance between the dual points, that is leave it to the reader to show that we obtain the envelope
of a circle as defined in terms of points. So the notion of a
S(AL,A2) =1 (Af,/-\%) : circle is essentially self-dual.

13
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13 Basic trigonometric laws Theorem 16 (Pythagoras)lf L; and L, are perpendicu-
lar lines then

For most calculations, we need explicit analytic formulae 0z =01+ 02 — O10-

for the main measurements.

Theorem 17 (Pythagoras’ dual) If a; and & are perpen-

Theorem 12 The quadrance between points a= dicular points then

Xi:y1:zi]and g = X2 1Yo @ 2] is

S=5+S-5%.

(X% +Y1y2 — 2122)°
g(ag,a)=1— .
d+yi—2) (6+y;-2B)

Theorem 18 (Spread law)

Theorem 13 Thespread between lines1= (I1: m : nq) S S S
andlb=(lp:mp:ny)is a:$:@.
Il 2
S(L1,L) = 1— Lot MMM )" Th 19 (Spread dual |
’ (|% T m% — ni) (@ i m% — n%) eorem 19 (Spread dual law)
. . . 01 02 Q3
These expressions are not defined if one or more of the S S g

points or lines involved is null, and reinforce the fact that
the duality between points and lines extends to quadrance
and spreads, and so every metrical result can be expecte
to have a dual formulation.

heorem 20 (Cross law)

(0102Ss — (01 + 02+ G) +2)° = 4(1— 1) (1— G2) (1— 0l3).
For a triangleazazaz with associated trilaterdl;LoL3 we
will use the usual convention thag = q(ag,az), 02 =
g(a1,a3) andgs = q(a1,a2), and S = S(Lp,L3), & =
S(L1,L3) and S = S(L1,L2). This notation will also (S1S05 — (31+Sz+83)+2)2=4(1—81) 1-9)(1-S).
be used in the degenerate case whera, and az are

collinear, orL1, L, andLs are concurrent.

Theorem 21 (Cross dual law)

There are three symmetrical forms of Pythagoras’ theorem,
the Cross law and their duals, obtained by rotating indices.
A proper appreciation for the beauty and power of these
formulas requires some familiarity with rational trigonem
etry in the plane (see [18]), together with rolling up one’s
sleeves and solving many trigonometric problems in the
hyperbolic setting. For students of geometry, this is an ex-
cellent undertaking.

Figure 25: Quadrance and spreads in a hyperbolic 14 Righttriangles and trilaterals
triangle
With this notation, here are the main trigonometric laws in Righttriangles and trilaterals have some additional impor

the subject. These are among the most important formulad@nt Properties besides the fundamental Pythagoras theo-
in mathematics. rem we have already mentioned. We leave the dual results

to the reader. Thales’ theorem shows that there is an aspect
of similar triangles in hyperbolic geometry. It also helps
explain why spread is the primary measurement between
lines in rational trigonometry.

Theorem 14 (Triple quad formula) If a;,a; and & are
collinear points then

(G + 2+ Gs)* = 2 (0 + 63+ 43) + 401020s.

Theorem 22 (Thales) Suppose tha@iazas is a right tri-
Theorem 15 (Triple spread formula) If Li,L, and Ls angle with § = 1. Then
are concurrent lines then

@ @
(S+9+%)°=2(S$+$+5) +459S. S=g Ml S=g.

14
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15 Triangle proportions and barycentric co-
ordinates

The following theorems implicitly involve barycentric co-
ordinates. These are quite useful both in universal and clas
sical hyperbolic geometry, see for example [17].

Theorem 25 (Triangle proportions) Suppose thaajazaz
is a triangle with quadrancesigg; and @, correspond-
ing spreads §& and $, and that d is a point lying on
) the line aay, distinct from g and g. Define the quad-
Figure 26: Thales’ theorem: §= 01/d3 rances f = q(as,d) and , = q(ap,d), and the spreads
The Right parallax theorem generalizes, and dramatically R1 = S(azas,azd) and R = S(agap, azd). Then
simplifies, a famous formula of Bolyai and Lobachevsky

(see [6]) which usually requires exponential and circular Ri_Snn_an

functions, hence a prior understanding of real numbers. Re Sr2 qer

Theorem 23 (Right parallax) If a right triangle ajazaz
has spreads 5= 0, S = S and §= 1, then it will have
only one defined quadrance ¢ q given by

~S-1
S
o Figure 28: Triangle proportions:
Ri/Re = (S1/%) x (r1/r2)
q
Theorem 26 (Menelaus)Suppose thaaiazas is a non-
a null triangle, and that L is a non-null line meetinga,
< aiagz and aap at the points Ip, by and ks respectively. De-
fine the quadrances
Figure 27: Right parallax theorem: g (S—1) /S ri =q(ag,bi) t1 =q(by,a3)
We may restate this result in the form re=q(asbz)  2=q(bza)
rs=q(a,bs) tz=q(bs,a).
1
S= m Then krorz = tytots.

Napier's Rules are much simpler in the universal setting,
where only high school algebra is required.

Theorem 24 (Napier's Rules) Suppose a right triangle
aiazaz has quadrancesigqgy and ¢, and spreads S5
and $ = 1. Then any two of the five quantitiegs $,qz, 02

and ¢ determine the other three, solely by the three basic o Ry\ [/ T2 K
equations from Thales’ theorem and Pythagoras’ theorem:
01 2

q
S=— S=— 03 =1+ 02— Q102.
as ds Figure 29: Menelaus’ theorem:qirorz = tytots

15
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Theorem 27 (Menelaus’ dual) Suppose that; AxA;z is a
non-null trilateral, and that | is a non-null point joining
AxA3, A1A3 and A /A, on the lines B, By and Bs respec-
tively. Define the spreads

R1 = S(A2,B1) T1 = S(B1,A3)
Ro = S(Az,By) T, = S(B2, A1)
Rs = S(A1,Bg3) T3 = S(B3, A).

Then RRoR3 =Ti ToTs.

Figure 30: Menelaus dual theorem:1RR3 = T1 T> Tz

Theorem 28 (Ceva) Suppose that the triangiazaz has
non-null lines, that g is a point distinct from @ a; and
az, and that the lines a1, agpay; and aaz meet the lines
aras, ajaz and aap respectively at the points; pb, and
bs. Define the quadrances

ri1 =q(az,by) t1 = q(by,a3)
r> =q(as, b2) to =q(b2,a1)
rs=q(a,bs) tz=q(bs,a).

Then frars = tytots.

Figure 31: Ceva’s theorem: arorz = tytots

Theorem 29 (Ceva dual)Suppose that the trilateral

A1A2A3 is non-null, and that A is a line distinct from
A1,A2 and A, and that the points #\1, AocA2 and AAg

join the points AAz, A1A3 and AlA; respectively on the

lines B, B, and Bs. Define the spreads

Ry = S(A2,B1) T1 = S(B1,A3)
R> = S(As3,By) To = S(Bz, A1)
R3=S(A1,Bs)  Ts=S(B3,Ay).

Then RRoR3 =T ToTs.

16

Figure 32: Ceva’s dual theorem: fRR3 = Ty To T3

16 Isosceles triangles

Theorem 30 (Pons Asinorum) Suppose that the non-null
triangle azazaz has quadrancesiqgy and ¢, and corre-
sponding spreads1SS and S. Then g = gy precisely
when $=3S.

Theorem 31 (Isosceles right)lf agazaz is an isosceles
triangle with two right spreads :S= S = 1, then also
g1=gx=1land S =qs.

Figure 33:Isosceles right triangle: g= g2 = 1 and
S=03

Theorem 32 (Isosceles triangle)Suppose a non-null iso-

sceles triangl@iazaz has quadrances;g= g2 = g and g,

and corresponding spreads S $ = S and $. Then the

following relations hold:

_4(1-99(1-0)
(1-59°

4S(1-9)(1—q)

d =
an S 1 Sq)2

Figure 34:Anisoscelestriangle:= =09, S5=S=S
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Theorem 33 (Isosceles parallax)f azazaz is an isosce-  and
les triangle with @ a null point, g =gand S =S =S

X
then S(ba.bd) = - S(bc,bd) = )F/
- 4(S—-1) P q
g= 5 S(ac,ab) = < S(ch,ca) = <
S(ac,ad) = q(1-p) S(ca,cd) = PL—q)
ap and
5 S(da,dc) =S=1-pq.

Figure 35: Isosceles parallax: g 4(S—1) /S

17 Equilateral triangles

Theorem 34 (Equilateral quadrance spread)Suppose
that a triangleazazaz is equilateral with common quad-
rance g = 0o = g3 = g, and with common spread Figure 37:Lambert quadrilaterabbcd

S =5=%=S.Then
19 Quadrea and triangle thinness

(1-S09°=4(1-9)(1—q).

If ayazaz is a triangle with quadranceg, g, andqgsz, and
spreadss;, S andSs, then from the Spread law the quan-
tity

A = 50203 = S0103 = S0102
is well-defined, and called thquadrea of the triangle
aiazaz. It is the analog of the squared area in universal
hyperbolic geometry. In Figure 38 several triangles with
their associated quadreas are shown. Note that the quadrea
is positive for a triangle of internal points, but may also be
negative otherwise.

Figure 36: Equilateral quadrance spread theorem:
(1-S9°=4(1-9)(1—q) 7 ‘

18 Lambert quadrilaterals

]

Theorem 35 (Lambert quadrilateral) Suppose a quad-
rilateral abcd has all three spreads attaand ¢ equal to
1. Suppose that & q(a,b) and p= q(b,c). Then
Figure 38: Examples of triangles with quadreas

1- 1-— —
q(c,d):y:ql(_ P) qad) =x— pl(_ ) A=-1,0.5,20and2
ap ap An interesting aspect of hyperbolic geometry is thin-
q(a,c) =S=q+p—qp qb,d)=r = 3P~ 29p gles are thin Here are two ways of giving meaning to this,
1-qp both involving the quadrea of a triangle.

17
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Theorem 36 (Triply nil Cevian thinness) Suppose that
0203 is a triply nil triangle, and that a is a point dis-
tinct from a1, 02 and as. Define the cevian points; =
(aaj) (0203), ¢ = (adz) (01a3) and ¢ = (ads) (a1002) .
ThenA (cicc3) = 1.

Figure 41: Null perspective theorem:(d,y) = q (X1, Y1)

Theorem 39 (Null subtended) Suppose that the line L
passes through the null points; and a,. Then for any
other null pointaz and any line M, let a= (a;a3)M and
ap = (ap03)M. Then g= q(a1,a) and S= S(L,M) are
related by

Figure 39: Cevian triangle thinnessA (€16;C3) = 1 o1
go=1.

Theorem 37 (Triply nil altitude thinness) Suppose that In particular g is independent afs.
010203 is a triply nil triangle and that a is a point dis-
tinct from the duals of the lines. If the altitudes to the $ine
of this triangle from a meet the lines respectively at base
points h, b, and kg, thenA (bibobs) = 1.

Figure 42: Null subtended theorem: gS1

Figure 42 shows two different examples; note tklaheed

not pass through any null points. The Null subtended the-
orem allows you to create a hyperbolic ruler using just a
straight-edge, in the sense that you can use it to repeatedly
duplicate a given segment on a given line. Here is the dual
20 Null perspective and null subtended the-  result.

orems

Figure 40: Altitude triangle thinnessA (bibzbs) = 1

Theorem 40 (Null subtended dual) Suppose that the
There are many trigonometric results that prominently fea- point | lies on the null lines\; and Az. Then for any
ture null pointsandnull lines We give a sample of these other null lineAz and any point m, let A= (A1/A3)m and
now. For some we include the dual formulations, for others A2 = (A2/A3)m. Then S= S(Ly,L2) and = q(I,m) are
these are left to the reader. related by

Sg=1.

Theorem 38 (Null perspective) Suppose thati1,a, and
as are distinct null points, and b is any point amos Theorem 41 (Opposite subtended)Supposeafyd is a
distinct froma and az. Suppose further that x and y  quadrangle of null points, and that p are also null points.
are points lying ono102, and that x = (a203) (xb) and Let a= (ap) (yd), b= (Bw) (Yd), c= (y) (ap) and d=
y1 = (a203) (yb). Then (80) (ap). Then

q(x,y) ZQ(leyl)' q(a’ b) :q(C,d).

18
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Theorem 44 (48/64) If the three spreads between oppo-
site lines of a quadrangle@; 020304 of null points are PR
and T, then

PR+RT+PT =48

and

PRT =64,

Figure 43: Opposite subtended theorem(agb) = q(c,d)

Butterfly theorems have been investigated in the hyper-
bolic plane ([13]). The next theorems concern a related
configuration of null points.

Theorem 42 (Butterfly quadrance) Suppose thatiyd
is a quadrangle of null points, with g (ay) () a diago-
nal point. Let L be any line passing throughemd suppose
that L meetid at x andfy aty. Then

a(9,x) =q(9,y)-

Figure 46: The48/64theorem: PR RT+ PT =48
and PRT= 64

It follows that
1 1 1 3

RYsTT 7

In particular if we know two of these spreads, we get a

linear equation for the third one.
Figure 44: Butterfly quadrance theorem:(g,Xx) = q(g,y)

Theorem 43 (Butterfly spread) Suppose thatByd is @ Theorem 45 (48/64dual) If the three quadrances be-

quadrangle of null points, with g (ay) (B3) a diagonal  tween opposite points of a quadrilateraAzAz/A4 of null
point. Let L be any line passing through g. Then lines are pr andt, then

S(L,ad) = S(L,By).

pr-+rt 4 pt=48

and

Figure 45: Butterfly spread theorem: (§,ad) = S(L, By)

21 The 48/64 theorems

In universal hyperbolic geometry we discover many con-

stants of nature that express themselves in a geometrical

way. Prominent among these are the numbers 48 and 64fFigure 47: The48/64 dual theorem: p#-rt + pt =48and
but there are many others too! prt =64
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22 Pentagon theorems and extensions

The nexttheorem does not rely on null points, butis closely
connected to a family of results that do.

Theorem 46 (Pentagon ratio) Supposeaiazazazas Is a
pentagon, meaning a cyclical list of five points, no three
consecutive points collinear. Defideagonal points

bl = (0204) (0305) , bz = (0305) (0401) s
bs = (0(401()j(a502) , ba = (asa2) (a1013), Figure 49: Pentagon null product theorem:
an & = (@103) (02014), 01(b1,b2) (b2, b3) (b3, ba) (s, bs) 4 (s, ba) = — %

45
and subsequentlypposite points
Theorem 48 (Pentagon null symmetry) With nota-

C1 = (a1hy) (apas), C2 = (azhp) (aga), tion as in the Pentagon ratio theorem, suppose that
C3 = (aghs) (aud2), Ca = (aubs) (asa3), 0102030405 is a pentagon of null points, then
and G = (ashs) (ag24) -

Then q(b1,cs) =q(bs,c2), q(bz,cs5) =q(by,c3),
q(bs,c1) =q(b2,ca), q(bs,c2) =q(bs,cs)
q(by,¢4)q(b2,c5)q(bs,c1)q(bs,c2) q(bs, C3) and q(bs,c3) = q(ba,c1).

= q(b2,¢4)q(bs,cs) q(ba,c1)q(bs,c2) (b1, C3) . Furthermore if we fixas, 03,04 and as, then the quad-

rance qbs,cy) = q(bs, cs) is constant, independent af.
%

Figure 48: Pentagon ratio theorem

Since the pentagon is arbitrary, it follows by a scaling ar-

gument thaexactly the same theoreholds in planar Eu-  Figure 50: Pentagon null symmetry theorem:

clidean geometry, where we replace the hyperbolic quad- q(b1,ca) = q(bs,c2) etc

ranceq with the Euclidean quadran€g since for five very  gince five points determine a conic, here is an analog to the
close interior points, the hyperbolic quadrances and Eu-pentagon ratio theorem for general septagons.

clidean quadrances are approximately proportional.

There are also some interesting additional features that oc Theorem 49 (Septagon conic ratio)Suppose

cur in the special case of the pentagon when all the pointsa;a,030,050607 is a septagon of points lying on a conic.

a are null. Define diagonal points
Theorem 47 (Pentagon null product) Suppose b1 = (a305) (0406), bz = (0406) (0507),
010203004075 is a pentagon of null points. Define diagonal bs = (as07) (0ga1), ba= (0ga1) (a7002),
points bs = (a702) (0103), bs = (0103) (0204),
bl = (0204) (0305) , bz = (0305) (0401) s and b] = (GZCM) (0305) ’
bs = (a401) (as502), bs= (asaz) (a103), and opposite points
and b = (a103) (02014) .
Then CL = (dlbl) (0702) , C= (dzbz) (0103) s
1 C3 = (03b3) (0204) , C= (d4b4) (0305) s
q(b1,b2)q(b2,bs) q(bs, ba) q(ba, bs) q(bs, b1) = —=. Cs = (0isbs) (AaCls) ,  Co = (0lebe) (05017),
4 and ¢ = (a7b7) (0607)
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Then g(a, f) =q(a,D) wheref is a fixed point called &cus

andD is a fixed line called airectrix , and wheregy(a,D)
d(cy,bs) q(cz,be) a(cs, by) a(ca, br) q(cs, bz) q(cs, bz) q(cz, bs) is the quadrance from the poiatto the base poinb of
=q(c1,ba)q(co,bs)q(cs, bs) q(ca. b7) g(cs, b1) g(cs, b2) g(c7,bs).  the altitude taD througha. The following theorems sum-

marize some basic facts about such a hyperbolic parabola,
Since the notion of a conic is projective, a scaling argumentSome similar to the Euclidean situation, others quite dif-
shows that the same theorem holds also in the Euclidearferent. The situation is illustrated in Figure 52. Careful
case. Figure 51 shows the special case of a septagon of nukxamination reveals many more interesting features of this
points (top), and a more general case where the septago#ituation, which will be discussed in a further paper in this
lies on a conic (bottom), in this case a Euclidean circle. ~ series.

| conjecture that the Septagon conic ratio theorem extends

to all odd polygons. Theorem 50 (Parabola focus directrix pair) If a (hyper-
bolic) parabola p has focus fand directrix Dy, then it also
has another focus = Df and another directrix R = ff.

Theorem 51 (Parabola tangents)Suppose that bis a
point on Dy such that the two midlines of the sitief;
exist. Then these midlines meet the altitude line {o D
through h at two points (both labelledsain the Figure)
lying on the parabola, and are the tangents to the parabola
at those points.

We note that in addition if the two midlines of the siolefy
exist, then both midlines meet at the pdipt= (by f1)L ly-

ing onD, and the corresponding midlines of the slud,
meet the altitude line t®» throughb, at two points (both
labelleda; in the Figure) lying on the parabola, and them-
selves meet ab;. This gives a pairing between some of
the pointsb; lying on D1 and some of the points, lying

on D,. Of the four points labelledy andas lying on the
parabola, one of tha; points and one of tha, points are
(somewhat mysteriously) perpendicular. The entire situa-
tion is very rich, and emphasizes once again (see [20]) that
the theory of conics is not a closed book, but rather a rich
mine which has only been partly explored so far.

Recall that in Euclidean geometry the locus of a paint
satisfyingq(a, f1) + q(a, f2) = k for two fixed pointsf;
and f; and some fixed numbdéris a circle.

Figure 51: Septagon conic ratio theorem

23 Conics in hyperbolic geometry

The previous result used the fact that conics are well-
defined in hyperbolic geometry, since they can be defined
projectively, and we are working in a projective setting. A
natural question is: can we also study conics metrically
as we do in the Euclidean plane? In fact we can, and the
resulting theory is both more intricate and richer than the
Euclidean theory, nevertheless incorporating the Euahide
case as a limiting special case.

We have already mentioned (hyperbolic) circles and il-
lustrated them in Figures 23 and 24. Let us now just
briefly outline some results for @nyperbolic) parabola,

which may be defined as the locus of a pargatisfying Figure 52: Construction of a (hyperbolic) parabola
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Theorem 52 (Sum of two quadrances)The (hyperbolic)
parabola p described in the previous theorem may also be
defined as the locus of those points a satisfying

q (a7 fl) +q (a, fz) =1.

Many classical theorems for the Euclidean parabola hold
also for the hyperbolic parabofa Here are two, illustrated
in Figure 53.

Theorem 53 (Parabola chord spread)If a and b are two
points on the hyperbolic parabola p with directrix D and
focus f and if c is the meet of D with the tangent of p at
a, while d is the meet of D with the tangent to p athen
S(cf, fd) = S(af, fb).

Theorem 54 (Parabola chord tangents perpendicular)

If a and b are two points on the hyperbolic parabola p with
directrix D and focus f, and if e is the meet of D with, ab
while g is the meet of the tangents to p at a anthen ef

is perpendicular to gf

Figure 53: Hyperbolic parabola with focus f and
directrix D

24 Bolyai's construction of limiting lines

Here is a universal version of a famous construction of J.
Bolyai, to find the limiting linedJ andV to an interior line

L through a pointa, where limiting means thdt andV
meetL on the null circle.

Start by constructing the altitude liefrom ato L, meet-
ing L at ¢, then the parallel lind® througha to L, namely
that line perpendicular t&. Now let m denote the mid-
points ofac, there are either two such points or none.
there are two, choose any polmbn L, construct the alti-
tudeN to P throughb, and reflecb in both midpointanto
getd ande onP. The sideed hasa a midpoint, and the hy-
perbolic circle centered atthroughd ande meetsN at the
pointsu andv. ThenU = au andV = av are the required
limiting lines as shown.

22

Figure 54: A variant on J. Bolyai’s construction of the
limiting lines from ato L

This construction seems to not be possible with only a

straightedge, as we use a hyperbolic circle; this would cor-

respond to the fact that there are two solutions. The ques-
tion of what can and cannot be constructed with only a

straightedge seems also an interesting one.

25 Canonical points

Both the Canonical points theorem in this section and the
Jumping Jack theorem of the next section invotusbic
relationsbetween certain quadrances. | predict both will
open up entirely new directions in hyperbolic geometry.

The Canonical points theorem has rather many aspects, one
of which is a classical theorem of projective geometry.

Theorem 55 (Canonical points) Suppose that; andas

are distinct null points, and thatsxand y; are points ly-
ing on a102. For any third null pointas, and any point
by lying on ayas, define ¥ = (a103) (ysb1) and y =

(a103) (Xsb1). Similarly for any point b lying on o103

define x = (0203) (ysb2) and yi = (ap03) (Xsbz). Then
bs = (x1y2) (X2y2) lies onaj0,. Now define points

C1=(X2X3) (Y2Y3) C2=(X1X3)(Y1ys) C3= (X1X2)(Y1y2)

and corresponding points

W2 = (c1by) (a1013)
W3 = (C2b2) (a1012)
W1 = (Cgbg) (0203) .

73 = (C1by) (az012)
71 = (C2by) (02013)
2, = (c3bg) (a103)

Then z and w depend only on xand y;, and not on
as3,bs and by. Furthermore h, 2, ws are collinear, as are
b2,73, w1, and by, 71, Wo.
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Figure 55: Canonical points theoren¥zys determines
Z3W3

In particular note that the theorem implies that any two

pointsx andy whose join passes through two null points
determine canonically two pointsandw lying on xy in
this fashion. We calt andw the canonical pointsof x and

y. In Figure 55z3 andws are the canonical points & and
y3, while z; andw; are the canonical points af andys,
andz, andw; are the canonical points & andys.

Theorem 56 (Canonical points cubic)With notation as
above, the quadranceseq(xs,y3) and r= q(x3, z3) sat-
isfy the cubic relation

(q—4r)* = 8ar (2r —q). (4)
We call the algebraic curve

(x—4y)? = 8xy(2y—x)
the Canonical points cubic The graph is shown in Fig-

ure 56. It is perhaps interesting that the pd@y3,9/8] is
the apex of one of the branches of this algebraic curve.

Y
151
i+

Figure 56: The Canonical points cubic:
(x—4y)” = 8xy(2y—x)

26 The Jumping Jack theorem

Here is my personal favourite theorem. Although one can
give a computational proof of it, the result begs for a con-
ceptual framework that explains it, and points to other sim-
ilar facts (if they exist!)

Theorem 57 (Jumping Jack) Suppose thafi1020307 is
a quadrangle of null points, with g (a1a3) (0204) &
diagonal point, and let L be any line through @hen
for an arbitrary null point as, define the meets %
(a103) (0405), y=L(0405), Z= (0204) (a305) and w=
L (az0s). If r =q(x,y) and s= q(z,w) then

16rs(3—4(s+r)) =1.

Figure 57: Jumping Jack theorent:6rs (3—4(s+r)) =1

We call the algebraic curve
16xy(3—4(x+y)) =1

the Jumping Jack cubic. The Jumping Jack theorem
shows that it has an infinite number of rational solutions,
which include a parametric description with 6 independent
parameters.

The graphis shown in Figure 58. Note the isolated solution
[1/4,1/4], which is the centroid of the trilateral formed by
the three asymptotes.

Figure 58: Jumping Jack cubic16xy(3 — 4 (x+y)) = 1
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27 Conclusion have described also hold in elliptic geometry! That is be-

cause the algebraic treatment turns out to be essentially in
Universal hyperbolic geometry provides a new framework dependent of the projective quadratic form in the three di-
for a classical subject. It provides a more logical foun- mensional space that is implicitly used to set up the theory
dation for this geometry, as now analysis is not used, butjn (1). We have shown how many classical results can be

only high school algebra with polynomials and rational enjarged to fit into this new framework, and also described
functions. The main laws of trigonometry require only . a'and interesting results.

guadratic equations for their solutions. Theorems extend
now beyond the familiar interior of the unit disk, and also So there are many opportunities for researchers to make es-
to geometries over finite fields. Although we have not sential discoveries at this early stage of the subject. When
stressed this, it turns out that almost all the theorems weit comes to hyperbolic geometry, we are all beginners now.
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Snails in Hyperbolic Plane
ABSTRACT

The properties of the limagon of Pascal in the Euclidean
plane are well known. The aim of this paper is to ob-
tain the curves in the hyperbolic plane having the similar
properties. That curves are named hyperbolic snails and
defined as the circle pedal curves.

It is shown that all of them are circular quartics, while
some of them are entirely circular.

Key words: limagon of Pascal, hyperbolic plane, entirely

PuZevi u hiperboli¢koj ravnini
SAZETAK

Dobro su poznata svojstva krivulje euklidske ravnine zvane
Pascalov puz. U ovom se radu u hiperboli¢koj ravnini
konstruiraju krivulje sa sli¢nim svojstvima. Te su krivulje
nazvane hiperboli¢kim puZevima i definirane kao noZisne
krivulje kruZnica.

Pokazuje se da su svi hiperboli¢ki puzZevi cirkularne kvar-
tike, a neke od njih su ¢ak potpuno cirkularne.

Kljuéne rijeci: Pascalov puZ, hiperboli¢ka ravnina, pot-

circular 4-order curves

MSC 2010: 51M09, 51M10, 51M15

puno cirkularne krivulje 4. reda

1 Introduction A perpendicularity in the H-plane is defined by the abso-
lute polarity. This means that two lines grerpendicular
The properties of the limagon of Pascal in the Euclidean iff one passes through the absolute pole of the other. The
plane are well known. It is a bicircular curve of fourth pedalof a given curve with respect to a pointis the lo-
order, that can be obtained as a circle pedal curve, ([S], cus of the foot of the perpendicular from the pdito the

pp. 133-134). The pedal point (polB)is a node, cusp  tangent line to the given curve, [4].

or isolated double point of this pedal curve depending on A curve in the H-plane isircular if it touches the absolute
whether it is outside, on or inside the circle. The limagon -qnic at least at one point. If a curve possesses a com-

has cusps at the apsolute points and a singular focus thafop, tangent with the absolute conic (isotropic asymptote)
coincides with the midpoint of the segmedP, whereOis 5t e4ch intersection point, it entirely circular, [6].
the center of the circle. There are the limagones of PascalA curve having two touching points with the absolute

Epr?; ﬁ}ﬁ:’; Z'Q%léligss;ll)ggg glnsf)hgg]bbtaine d by the inver conic, possess a singular focus defined as an intersection
& y of isotropic tangent lines at the absolute points, [3].

sion of a conic if its focus coincides with the pole of the
inversion, ([5], p. 122). The limagon of Pascal possesses a

node, cusp or isolated double point depending on whetherp Hyperbolic snail
the generating conic is a hyperbola, parabola or ellipse,
respectively.

The limacon of Pascal possesses an axis of symmetry.
One can ask himself if there is a curve in the hyperbolic
plane having the similar properties.

Definition 1 A hyperbolic snail (H-snail) is a circle pedal
rve.

There are three classes of circles in the H-plane. There-

Leta be the absolute conic for the Cayley-Klein model of fore, different types of H-snail can be expected. The cir-
the hyperbolic plane (H-plane) represented by a circle of cles are classified into the hypercycles, cycles and horocy-
classical Euclidean plane. The interior points of the abso- cles depending on whether they touch the absolute conic at
lute conic are calledeal points exterior points arédeal two different real points, at a pair of imaginary points, or
pointsand points of the absolute conic are calidibolute whether their four absolute points coincide, respectjvely
points [4]. [4].
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Theorem 1 H-snail is a fourth order curve touching the
absolute conic at two points.

Proof. Let us construct the pedal curké of a circlec,.
Let the given circlec; be e.g. a hypercycle with the center
O and absolute touching poin® andO; and letP be the
pole of the pedal transformation, Figure 1.

The construction should be made in the following way:
The connecting lind®T, whereT is the absolute pole of
the tangent ling of the circlecy, intersectg in a pointTy
lying on the required curve.

Absolute touching point®1, O, obviously lie on the curve
k* since they are the feet of the perpendiculars from the
pointP to the isotropic asymptot€30; andOO;.

Through each of the intersection poimtg, A; of the ab-
solute conica and the polar linep of the poleP with
respect toa, pass two tangent lines to the hypercycle.
ConsequentlyA;, Az are double points of the required
curve. According to Chasles correspondence principal,
[9], k* is fourth order curve as it is the result of (1, 2)-
correspondence between the first order pencil of liigs
and the second order pen(ib) of the tangent lines of the
coniccy.

Two tangent lines to the hypercyate pass through the
point P. Their poles are located on the polar lipe The
connecting lines of those points with the poiare the
tangent lines ok* at its double poinP.

The constructed curvi is the fouth order curve touch-
ing the absolute conic &1, O,. It has three double points
0O,A1,A2, and a quadruple focu3.

If the given circlecy is cycle or horocycle, it is similar,
Figure 2. The cycle touches the absolute conic at the pair
of imaginary points, and the same holds for its pedal curve
k*. The horocycle pedal curve hyperosculates the absolute
conica at the touching poin® = O1 = O, with the inter-
section multiplicity 4. O

Figure 1

26

Figure 2

Corollary 1 Ifthe pole P of the pedal transformation is an
absolute point, H-snail is an entirely circular fourth orde
curve.

Proof. If the poleP lies on the absolute conic, three dou-
ble pointsP, A1, Az of H-snail coincide with the poirf at
which both tangents coincide with the lipeFigure 2.

Generally, an entirely circular quartic in the H-plane pos-
sesses six quadruple foci. The isotropic tangent IDEs,
00, of k* intersect the twice counted isotropic tangent line
p at the pointd=, R, respectively. Therefore, entirely cir-
cular H-snailk* possesses two quadruple f@ijP, and
two eightfold fociFy, F. O

0,

O
Figure 3

Remark 1 If the pedal poin® is a real pointk* has two
imaginary double points on the absolute conic. These are
imaginary contact points of the absolute conic and tangents
passing through the poift

The poleP is a node, cusp or isolated double point de-
pending on whether it is outside, on or inside the cimle
respectively.
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Remark 2 Let us denote by? the reciprocal curve of the

After connecting these four points with the pd&ea har-

circle ¢z in the absolute polarity, Figure 1. It's easy to monic quadruple of lines is obtained, [1]. Accordingly,

see that the pedal cunké of the circlec; is the inverse
curve of the circlec? with respect to the same pdre [8].

This fact simplifies derivation of some constructive and

synthetic conclusions about H-snalils.

The limacon of Pascal possesses an axis of symmetry. The

analogous statement holds in the hyperbolic plane.

Theorem 2 Let the H-snail R be the pedal curve of the
circle ¢ with the center O with respect to the pedal point
P. The line s= OP is an axis of symmetry of the H-snalil.

Proof. The fact that every circle of the H-plane is a
collinear image of the absolute corag [3], will be ap-
plied in the proof.

Let Ty be a point ork?, obtained as the foot of the perpen-
dicular from the polé to the tangent ling, Figure 4. Let
be the line througfy perpendicular t@. The connecting
line z= ST intersects the circle? in the pointT’, being
the pole of the tangent ling and inverse of the poirify,.
By A andB the intersection points of linewith lineszand

g are denoted.

(SBTnNTY) = —1. This finishes the proof. O

Figure 4

A circle is a symmetric curve with respect to every diam- For further studies of the entirely circular quartics in the

eter. In other words, the points and T’ are equally dis-
tanced from the line and equality SATT’) = —1 holds.
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ABSTRACT

In this paper a technique for the construction of smooth
surface patches fitted on triangle meshes is presented.
Such a surface patch may replace a well defined region
of the mesh, and can be used e.g. in re-triangulation,
mesh-simplification and rendering.

The input data are estimated curvature values and princi-
pal directions computed from a circular neighborhood of

Dijelovi plohe konstruirani iz podataka o
zakrivljenosti

SAZETAK

U ovom ¢lanku se prikazuje metoda za konstrukciju glatkih
dijelova plohe koji odgovaraju mreZi trokuta. Takav dio
plohe moZe zamijeniti dobro definirano podru&je mreZe,
i moZe se upotrijebiti npr. u retriangulaciji, simplifikaciji
mreZe i renderiranju.

Ulazni podaci su procijenjene vrijednosti zakrivljenosti i
glavni smjerovi izradunati iz kruZne okoline odredenog

a specified triangle face of the mesh. trokuta mreZe.

Key words: triangle mesh, principal curvatures, local
surface approximation

MSC 2010: 65D17, 68U07, 65D18, 68U05

Klju€ne rije¢i: mreza trokuta, glavne zakrivljenosti,
lokalna aproksimacija plohe

1 Introduction tracing methods. For optimal local approximation to the
underlying surface elliptical splats have been used in [7].
Triangle meshes are the most common surface representafhe two axes are aligned to the principal curvature direc-
tion in many computer graphics applications. In order to tions and the radii are inversely proportional to the mini-
reduce a model’s size, cut the storage space and decreasaum and maximum curvatures. From sampled points of
the time required to display the model, simplification algo- a surface analytic patches are constructed in a polynomial
rithms are applied to the mesh. A simplification algorithm form in [6]. First, the principal curvatures and the Dar-
in [5] is based on iterative edge contraction analyzed on aboux frame are estimated using sampled points along three
tessellation of twice-differentiable surfaces. For loapd curves passing through the point of interest. The coeffi-
proximation ellipsoids at the mesh vertices are computedcients of the polynomial function describing the required
that characterize the local shape of the surface. Thesepatch are computed by a constrained surface fitting method
guadrics are elongated in directions of low curvature and using the total Gaussian curvature. A different type of sur-
thin in directions of higher curvature. Edge contractions face elements, so-called surfel objects are used in [10].
are determined by minimizing the defined quadric metric Surfels are point primitives with attributes as surface nor
which result in appropriately stretched triangles in tme-si  mal, position, orientation and texture. They allow the cre-
plified mesh. ation of 3D graphic models with complex shapes.

Also in point-based surface models some approximating S€veral methods have been developed for getting curva-
geometric primitives are used for a compact representa-ture information from dlscretg surfa(;e representations. A
tion. Piecewise constant surfaces in the form of circular SUrvey of results in discrete differential geometry and-flex
discs, so-called splats have been proposed for renderinéble to'ols to approximate important geometric.attribu_tes,
purposes in [8]. Splat radii depend on local curvature prop- including normal vectors a_md curvatures on arbitrary trian
erties. From estimated normals at data points a smoothly9!€ meshes, also applications such as mesh smoothing
varying normal field is generated for each patch, which
is necessary for producing photo-realistic results in ray- * Supported by a joint project between the TU Berlin and the BUT
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are given in [9]. The quadratic paraboloid is the typi- of a “diameter”, denoted bg, the radiug, of the osculat-
cal analytic regular surface used for local approximation ing circle in the actual normal plane is computed by a third
of a mesh, which is usually computed by least squaresorder approximation method. By repeating this computa-
method ([3]). The principal curvatures of the underlying tion in sufficient many normal planes, curvature values can
surface are estimated by the principal curvatures of such ab€ ordered to the actual triangle face. The maximal and
paraboloid. In [2] the quadric is extended by linear terms, Minimal diameters determine the principal directiais
and is fitted iteratively by correcting the surface normal, T2 @nd the curvature radii (Fig. 3) denotedyandp in
which leads to a new quadric in each step. The curvatureF9- 4-

estimation method in [11] uses biquadratic Bézier patchesThis construction and curvature estimation work also on
as a local fitting technique. One advantage in using para-triangle meshes, where the usual vertex-based methods
metric form of the locally approximating surface is the cannot be applied. Such a mesh is shown in Fig. 7.

ability to add smoothing constraints when dealing with

noisy data. A surface-based method is applied to point-

based surfaces in [19]. The moving least-squares method

is used to compute analytic surfaces locally fitting a point

cloud, which provides direct curvature evaluation but also

feature recognition and rendering applications.

N

Instead of fitting a smooth surface to a local set of points a
different approach estimates the curvatures directly from
the discrete data of the triangulation. A classical paper Figure 1: Circular neighborhood of a face
of Taubin ([17]) shows a normal-curvature based method.

First, the normal curvatures are estimated in the direction "g

of each edge leaving the mesh vertex of interest, then the \
second fundamental tensor is computed. The principal cur- dr2
vatures are determined as eigenvalues of this tensor de- BN

fined at each vertex. The algorithm in [1] computes the T,

normal curvatures by fitting circles at each vertex in three
(or more) tangent directions using two neighboring points
and applying the Meusnier theorem. Then the principal
curvatures are computed on the base of Euler formula. A
modification of this algorithm is shown in [4] which is ad-
justed to deal with real discrete noisy range data. A finite- Figure 2: The osculating circle in a normal plane
differences approach for estimating curvatures on irregu-
lar triangle meshes is presented and used for computing
derivatives of curvature and higher-order surface difiere
tials in [12].

The objective of this work is to view a surface represented
by a triangle mesh as a collection of local patches. In
our algorithm a circular or elliptical surface patch is con-
structed around a specific triangle face of the mesh, and is
represented by a trigonometric vector function. The input Figure 3: Principal directions
data are estimated curvature values and principal direstio
computed from a neighborhood of the given triangle in the
following way ([14], [15]).

First a circular neighborhood is constructed around a spec-Having the principal direction$; and T, at the barycen-
ified triangle (Fig. 1). This bent disc laid onto the mesh is ter P of the actual triangle face, a local basis is defined by
determined by a given arc length as “radiug’(see Fig. {e1, e, e3} = {T1, T2, N} (Fig. 3). In the normal plane
2) which is measured in the normal sections of the meshcontaining the first principal direction the osculatingcter
along the polygonal section lines. From the chord length has the radiup1, the central angle of the given arc length

2 Theapproximating surface patch
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is o =rg/p1, p1 # 0. In the second normal plane deter- andf = min{a,2.5- (rg/p2)}, p2 # 0, while for circular
mined by the second principal direction, orthogonal to the patchefy = rg/po>.
first one, the curvature radiuspgs and the central angle of - e vector equation of the surface patch is generated from
the given arc length i =rg/p2, P2 7 0 (Fig. 4). Anar- ne two circle arcs in the normal planes through the prin-
bitrary point of the circles i€ andQ, respectively. The  cina) directions in such a way that the third coordinate of
position vector of these points, i.e. the vector equatidns 0 he arbitrary point of the patch is a convex combination of
these circle arcs in the local coordinate systems are those of the point€; andQ,, while the normal plane is
rotating around the normal vector with the angjle

PQ, = p1sinde; + (—p1+p1cosd)es, 0< 9 < a
q(8,0) = p+ p1sind cosper + p2sin(9 &) sinper+
((—p1+ p1COSY) COF O+ (P2 — pzcos(Bg)sinzq)) es,
0<9<0a,0<¢p<2m

for a negative principal curvaturkg = —1/p; and

PQ = pzSin(Sg)ez +(p2—p2 009(795)63, 0<9<q, In this equation the neighborhood of the pdiis assumed
to be of hyperbolic type. In the case of an elliptic neigh-

when the principal curvature; = 1/p; is positive. In  porhood the third coordinates of the arc poi@sandQ,

Fig. 49" =9(B/a). have to be computed by the same formula. In Fig. 5 the
boundary curve of the generated surface patch is shown in
a hyperbolic neighborhood of the poiat

by be, A
normal direction
/_
L
L
[ \
A .
e //
82 il
o
osculating ; ,Eu/n_daty curve
circles -
principal direction
=—0f maximal curvature
N ,r(
\‘ /I
% lrf
. . . . . . hs p—
Figure 4: Arcs of osculating circles in the principal RS
normal sections of given lengfng R
\ i
N[
These circle arcs will determine the approximating surface A
patch around the poift. If they are of the same arc length,
a circular patch will be generated. Figure 5: The boundary curve of the surface patch

In the construction of an elliptical patch we assume that |f the neighborhood of the poiri is of elliptic type, the

p1 < P2, i.e. the neighborhood of the poiRtis more flat  constructed patch is situated tangential on the concaee sid
in the second principal direction. Then we enlarge the arc of the mesh. Assuming that the mesh vertices are lying on
length of the osculating circle, in this way the patch to be the underlying surface approximated by the mesh, the po-
generated will be stretched in this directionk}f— 0, e.g. sition of this “inscribed” surface patch will be correctegd b
for a cylinder, thermp, — o andp — 11/2. Consequently, translating it in the normal direction. The measurement of
the corresponding arc is a straight line segment of lengththis translation is computed as the mean value of the dis-
— oo. This arc length should be limited in the construc- tances of the three vertex point of the base triangle to the
tion. In our examples this limit has been set t& 2y, generated patch.

31



KoG+14-2010 M. Szilvasi-Nagy: Surface Patches Constructed from QureaData

3 Examples and analysis of the patch con- In Fig. 7 a synthetic mesh of a half cylinder is shown.
struction In this triangulation all the mesh points are lying on the
boundary circles, and no vertices are in the region of the
In the examples circular and elliptical patches on “syn- construction. In such a case the vertex based algorithms do
thetic” and “real” meshed surfaces have been constructed Not work, but our face based curvature estimation resulted
Synthetic meshes are generated by computing the mesHin accurate principal curvatures and principal directions
points from the vector equation of the surface on the corre- ([14], [15]). The circular and elliptical patches are com-
sponding triangulated parameter domain. Real meshes ar@uted from these data. Series of the constructed patches
chosen from an available collection offered for test pur- May replace specified parts of the mesh (see Fig. 8).
poses.

Computations in a normal plane require an appropriate £
polyhedral data structure adapted to the triangle mesh. /_
Modeling systems usually store tesselated surfaces in STLL
format, which is a set of triangle faces, each described =
by three vertex points and a normal vector perpendicu-
lar to the face. In the implementation of our algorithms
the STL data have been scanned for searching identical
edges, hereby adjacent faces, and a polyhedral data struc- a b

ture based on a doubly linked edge system has been gen- ) o o
erated [13]. The polygonal line of intersections of the nor- Figure 7: Circular and elliptical patch on a cylindrical
mal planes and the mesh, the estimation of normal curva- meshed surface

tures and principal directions have been computed by the
help of this data structure implemented in Java program-
ming language. Then the mesh and the results of these
computations have been transferred to the symbolical al-
gebraic program package Mathematica [18]. The analyt-
ical description of the constructed patches, the error es-
timation and the figures have been made by Mathemat-
ica. The distance between a vertex point and the surface
patch (Fig. 6) has been computed also by Mathematica.

a b
Z . . .
Figure 8: Series of patches on a dense mesh of the cylinder.
The constructed patch approximates the mesh in a neigh-
normal direction borhood of its center point. The approximation error is
L depending on the size of the constructed patch. Working

on an analytic surface given by a vector equation, the input
data of the patch construction, namely the principal direc-
tions and curvatures at the actual surface point are com-
puted from the surface equation [16]. On triangle meshes
these data are estimated values. In both cases the osculat-
ing circles in the principal directions approximate the-cor
responding normal sections of the meshed surface with an
error. This error can be easily calculated at the end points
of the circle arc. In this way the arc lengtf determining

the size of the generated patch can be given using this error
value as prescribed tolerance. The questionis, how large is
the difference between the patch boundary and the mesh in
other normal sections. This difference has been computed
by the distance of a testpoint on the boundary curve of the
Figure 6:Translation of the surface patch patch to the mesh. As the triangle faces lying in the actual
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region of the construction are registered in the polyhedral

for computing the error (Fig. 9).
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Figure 11: Circular and elliptical patches on a saddle
surface

‘.
S
;

AN
AV

il
i
ol
ey

AV
QA

S

R
A

Figure 9: Error estimation

7
7

>

D>

R
N
N

N

RN
\\

AN

On a real mesh of the sphere (Fig. 10) four testpoints have
been chosen on a quarter of the patch boundary, i.e. in the
interval ¢ € [0,1/2]. The relative errors to the given arc
length of the osculating circle are for the smaller patch in
turn 0.18%, 0.06%, 0.04%, 0.65% and for the larger patch
accordingly 0.03%, 0.8%, 1.7%, 2.5%. For the smaller a b

patch the order of these errors roughly equals to the ap-

proximation error of the input data. The error is growing Figure 12: Circular and elliptical patches on a torus
fast by increasing the size of the patch. In our implemen-

tation an “optimal siz” of the patches has been chosen in-

teractively.
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Figure 10: Circular patches on a “real” mesh of a sphere

The measurements of the covered regions by circular
and elliptical patches have been investigated on synthetic
meshes of a saddle surface (Fig. 11) and a torus (Fig. 12).

In the case of “real objects” the size of approximating

patches may vary strongly. A large elliptical patch is
shown in Fig. 13. Figure 13: Elliptical patch on the mesh of the cow
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4 Conclusions

A construction method for generating circular and ellipti-
cal surface patches has been presented for local approxi-

mation of triangle meshes. This is a novel, direct way for

[10]

building a vector function of such analytical surfaces from [11]
estimated curvature data. The numerical analysis has been

made on synthetic meshes of cylindrical and toroid sur-
faces. The implementation of the algorithm has been de-

veloped in Java programming language and by the help ofl12]
the symbolical algebraic program package Mathematica.
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Visualization of Geodesic Curves, Spheres and
Equidistant Surfaces in S°xR Space

ABSTRACT

The S°xR geometry is derived by direct product of the
spherical plane S? and the real line R. In [9] the third au-
thor has determined the geodesic curves, geodesic balls of
S?xR space, computed their volume and defined the no-
tion of the geodesic ball packing and its density. Moreover,
he has developed a procedure to determine the density of
the geodesic ball packing for generalized Coxeter space
groups of S?xR and applied this algorithm to them.

E. MOLNAR showed in [3], that the homogeneous 3-spaces
have a unified interpretation in the projective 3-sphere
fPSS(V47V47R). In our work we shall use this projective
model of S2xXR geometry and in this manner the geodesic
lines, geodesic spheres can be visualized on the Euclidean
screen of computer.

Furthermore, we shall define the notion of the equidistant
surface to two points, determine its equation and visual-
ize it in some cases. We shall also show a possible way
of making the computation simpler and obtain the equa-
tion of an equidistant surface with more possible geometric
meaning. The pictures were made by the Wolfram Math-
ematica software.

Key words: non-Euclidean geometries, projective geom-
etry, geodesic sphere, equidistant surface

MSC 2010: 53A35, 51M10, 51M20, 52C17, 52C22

Vizualizacija geodetskih krivulja, sfera i
ekvidistantnih ploha u prostoru $°xR

SAZETAK

S?XR geomettrija izvodi se kao direktni produkt sferne rav-
nine S i realnog pravca R. U &lanku [9], treéi je au-
tor odredio geodetske krivulje i geodetske kugle prostora
xR, izraéunao njihov volumen i definirao pojam popu-
njavanja geodetskim kuglama i njegovu gusto¢u. Pored
toga, razvio je metodu odredivanja gustoce popunjavanja
geodetskim kuglama za generalizirane Coxeterove grupe
prostora S2X R i primijenio taj algoritam na njih.

U [3] je E. MOLNAR pokazao da homogeni 3-prostori
imaju jedinstvenu interpretaciju u projektivnim 3-sferama
?83(V4,V3,R). U nasem &lanku koristit éemo projektivni
model S?x R geometrije te se na taj na&in geodetske linije
i kugle mogu vizualizirati na euklidskom ekranu racunala.

Nadalje, definirat ¢éemo pojam plohe jednako udaljene od
dviju toéaka, odrediti njezinu jednadzbu te je vizualizirati
u pojedinim slu¢ajevima. Takoder ¢emo pokazati moguci
nadin pojednostavljena rac¢una i dobiti jednadzbe plohe s
to&nijim geometrijskim zna&enjem. Slike su napravljene u
Wolframovom programu Mathematica.

Kljuéne rijeci: neeuklidske geometrije, projektivna geo-
metrija, geodetske sfere, ekvidistantne plohe

1 On xR geometry

The structure of an isometry grolip- Isom(S*xR) is the

following: I := {A x pi }, whereA x pi := A x (R, i) :=
S?xR s derived as the direct product of the spherical plane (gi,ri), A € Isom(S?), R; is either the identity mafir of R
$? and the real linR. The points are described B, p) or the point reflectiodr. gi := A x R is called the linear
whereP € S? andp € R. The isometry groupsomS?xR) part of the transformatio(®; x p;) andr; is its translation
of xR can be derived by the direct product of the isome- part. The multiplication formula is the following:
try group of the spherical plarisom(S?) and the isometry
group of the real linésomR). (Ar % Ri,r1) 0 (Ao x Ro.) = ((AtAo x RiRo,T1Rs+ 1),

IsomS?xR) := Isom(S?) x IsomR); (1.1) (1.2)
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E. MOLNAR has shown in [3], that the homogeneous 3- Finally Ry = (Ry,0) is a special rotation aboytaxis with
spaces have a unified interpretation in the projective 3- 0 fibre translation, which moves the pojita”,0,y’) into
sphereP83(V4,V4,R). In our work we shall use this the[x,y] plane.

projective m.odel quZ x R and the Cartesian homoge- sz(L a”,0,y') — szazy(L 1,0,0) =
neous coordinate simpl&(ep), Ey’(€1), B3’ (e2), ES'(€3), (1.5)
({&} € V* with the unit pointE(e = e+ €1 + & + &)) =PTRRy (1,4 /a2 +y'2,0,0).

which is distinguished by an origigy and by the ideal ) ] ]
points of coordinate axes, respectively. Moreoyes; cx Remark 1.1 More informations about the isometry group

> o .
with 0 < c € R (or c € R\ {0}) defines a pointx) = (y) of S*x R and about its discrete subgroups can be found in

of the projective 3-spher@823 (or that of the projective [1]. [2] and [9].
spaceP® where opposite ray) and(—x) are identified).

The dual systeri(€)} C V4 describes the simplex planes, 2 Geodesic curves and spheres 0ESR
especially the plane at infinit§e®) = ET’EZEZ, and gen-

erally, v = ug defines a plangu) = (v) of P8 (or that . Molnar [3] has introduced the natural the well-known
of P3). Thus 0= xu = yv defines the incidence of point infinitezimal arc-length square at any point 8 xR as
(x) = (y) and planeg(u) = (v), as(x)I(u) also denotes it.  follows
ThusS? xR can be visualized in the affine 3-spake (so

dx)2 + (dy)2+ (d2)?
in E3) as well. (dg)? = ( )xziyg)jt 22( ) (2.1)
In the !ater septions yve will use some.special types of we shall apply the usual geographical coordiantes
S? xR isometries, which transforms a fixé®{(1,a,B,y) (9.6), (< @< —F <8< J) of the sphere with the

point of S?xRinto (1,1,0,0). This will be useful for deter-  fibre coordinaté € R. We describe points in the above co-

mining the equidistant surfaces, so now we will compute ordinate system in our model by the following equations:
this transformation.
X =1, x! =¢& cospcosd, x° =€ sinpcosh, x° =€ sind.

(2.2)
Then we havex = %15 =xt y= %25 —x2, =5 =53
i.e. the usual Cartesian coordinates. We obtain by (2.1)
and (2.2) that in this parametrization the infinitezimatarc
length square at any point 8 xR is the following
(d9)? = (dt)2 + (d@)?cos B+ (d)>. (2.3)

Hence we get the symmetric metric tensor figigl on
S? xR by components:

“0-level”
=0

-0
0(1,0,0,0) '

) T Similarity};:a_n:?fbrnzatian
P(P,e) — P(P,e) with the ratio h=e'

Figure 1: Translation inS? xR geometry

1 0 0
T = (Id., T) is a fibre translation, gj:=|0 cosé 0], (2.4)
0 0 1
P(1,a,B,y) — P7(1ad ,B,Y) = The geodesic curves 8 xR are generally defined as hav-

ing locally minimal arc length between their any two (near

T a B Y : ' :
(1, > 5 7> ) — )- enough) points. The equation systems of the parametrized
R e N N A geodesic curvegt(t),®(t),0(t)) in our model can be de-

(1.3) termined by the general theory of Riemann geometry:

(P has O fibre coordinate), (see Fig. 1). By (2.4) the second order differential equation system of

- . _ _ ) the S? xR geodesic curve is the following [9]:
Similarly R, = (R,0) is a special rotation about axis

with O fibre translation, which moves the poidta’, ',y ¢ 2tanBed = 0, O+ sinBcosBy? =0, t=0, (2.5)
into the[x, 7] plane. from which we get first an equator circle 8Atimes a line
on R each running with constant velocityandw, respec-
PT(laa/7BlaV) - P'Tyz(l’a//’o’v/) = tiVely:
(1.4)
=PTR(1,\/a2+(2,0,Y). t=c1, 6=0, p=w-T, P+’ =1 (2.6)
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We can assume, that the starting point of a geodesic curve~rom (2.7) follows tha8(p) is a simply connected surface
is (1,1,0,0), because we can transform a curve into an ar- in E2 if and only if p € [0, 1), because ip > tthen there
bitrary starting point, moreover, unit velocity can be as- is at least one € [—7, 7] so thaty(t,v) = z(t,v) =0, i.e.
sumed. Then we get the equation systems of a geodesigelfintersection would occur.

curve, visualized in Fig. 2 in our Euclidean model: Thus we obtain the following

T— (X(1),y(1), (1)),
X(T) = ersinvCOS(T cosv), Prpposition 2.7 The geodesic sphere.and ball of rad'ms
sy (with the above requirements) exists in $fex R space if
y(1)=¢€ | sin(Tcosv) cosu, 2.7) and only ifp & [0, .

Z(1) = """ sin(tcosv) sinu,
with fixed —mt<u<mm, _I <v< E.
2 2
Remark 2.1 Thus we have also harmonized the scales
along the base sphere and the fibre lines.

Figure 3: Geodesic half sphere and sphere of radius 2

3 Equidistant surfaces in $ xR geometry

. . . i i ?
Figure 2: Geodesic curves with the base sphere, (‘the 3.1 Whatabout parameters of a given geodesic curve?

spider”) It can be assumed by the homogeneity &% x R

that one of endpoints of a given geodesic curve seg-
ment isPi(1,1,0,0) to simplify our calculations. The
other endpoint is given by its homogeneous coordinates
P>(1,a,b,c). We consider the geodesic curve segment
Sp,p,. Our first goal is to calculate parametersi, v be-
longing toGp,p,. We get by (2.7) the following important
observation:

Definition 2.2 The distance (P1,P,) between the points
P; and B is defined by the arc length of the geodesic curve
from B to P.

Definition 2.3 The geodesic sphere of radips(denoted
by S, (p)) with centre at the pointHis defined as the set of
all points B in the space with the condition By, P,) = p.

Moreover, we require that the geodesic sphere is a simply \/m _ gsinv

connected surface without selfintersectiorsfnx R space. (3.1)

Remark 2.4 We shall see that this last condition depends We obtain from (2.7) and (3.1) the following equations and
on radiusp. the parametev :

Definition 2.5 The body of the geodesic sphere of centre

P, and of radiusp in the S’ xR space is called geodesic Va2 +b?+c2cos(tcosv) =a =
ball, denoted by B (p), i.e. Q€ Bp,(p) iff 0 < d(P1,Q) < a (3.2)
a c

Remark 2.6 Henceforth, typically we choosd,1,0,0)
as centre of the sphere and its ball, by the homogeneity

of xR. logv/ a2+ b2+ c2 = tsiny, (3.3)
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logva2+ b2+ c?
__a
arccos( m)
logva?+b?+c?

a
arccos( a2+b2+02)
if R¢x<a#£0 b=c=0.

tanv =

(3.4)

= V= arctan

)

Remark 3.1 If P, € x, then v= g u = 0 moreover the

geodesic curve is the Euclidean segmefi®P and its
equidistant surface is a Euclidean sphere in our model.

Thus we get the parametefrom (3.1) and (3.3):
. logvaZ+b?+c?

- if 0.
sinv tv#

(3.5)

The parameteun of the given geodesic cunp,p, can be

expressed by (2.7):
(1)

¢ tanu u arctan( C)
—_— - = — = — 1.
b b

v (3.6)

Remark 3.2 If v=0then

_ a _ _ C
T= arccos(\/m> = arccosa) and u= arctan(g).
3.2 The equation of the equidistant surface

We want to find an equation for the surfafigp, consist-
ing of all points that are equidistant from the poitand
Po.

Definition 3.3 An equidistant surfac&p,p, of two arbi-
trary given points P, P, € S’ xR consists of all Xc S>xR
points, for which @P,X) = d(X,P,) holds. Moreover,

we require that this surface is a simply connected surface
without selfintersection i6? xR space.

The varying poiniX(1,x,y,2) € Sp,p, satisfies the follow-
ing equation (see formulas (1.1), (1.2), (1.3), Fig. 4):

)=

d(Py,X) = d(X,Py) = d(XTReRy pJ Ry

) (3.7)
d(X7RRy Py), VX € 8pip,

Itis clear by the above equation (3.7), that the length of the
geodesic curv€p, x is equal to the length of the geodesic

line 9szmy b thus thet parameters (can be determined
Sp

)

ax+by+cz

surfaceSp, p, after major simplification in model a2 xR
Va2 + b2+ 2\ /2 +y2+ 2
a?+b%+ cz) B

geometry:
)+
X2 4y2+ 7

>+Iogz(x2+y2+zz).

4arccod (

+log? ( (3.8)

— darccod | — X
VX2 +y2+ 7

P>

Figure 4: Itis clear, that Xe Sp,p, if and only if d Py, X) =

d(Py, P} *#*) holds.

Using formula (3.8) we can visualize the equidistant sur-
face by computer (Fig. 5).

—T—
i {
A :

Figure 5: An equidistant surface, and how to change the
equidistant surfaceSp, p, with fixedP;(1,1,0,0)
and varyingP; : (1,4,0,0) — (1,—3,2,0) along
their geodesic curve.

by (3.5) and Remark 3.1) of the above geodesic curves aréXémark 3.4 The behavior of the equidistant surfaces at
equal. Finally we have got the equation of the equaidistant(and near) the origin requires more discussion.
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3.3 Further examination in Euclidean sense Let us consider that case, whélgelies on the base sphere,
e.g.(a,a) =1.

Equation (3.8) can be simplified by using some Euclidean

concepts and notations. In this subsection we will use these,, ihis case we get by (3.10) the following equation:
simplifications to find some Euclidean geometric meaning

behind the equation. 462 1 10g?((x,x) 1) = 482 + log?((x,x)) & £ = 5. (3.12)
Let us note the Euclidean location vectors of the points

P1(1,1,0,0), P»(1,a, b, c) and X(1,x,y,z) by €(1,0,0), This means, if?; is on the base sphere, th8gp, is an
a(a,b,c) andx(x,y, z) respectively. Substituting the usual Euclidean plane without the origin.

denotation of Euclidean scalar prodyct) into equation

(3.8) we obtain its following form: Our projective method gives us a way of investigating ho-

mogeneous spaces, which suits to study and solve similar

(a,x) (aa)y problems (see [7], [8]).
4arccod <——<a, = —<x,x)> +log? ( (x,x>) -
3.9

= 4arcco$ M) +log? ((x,x)).
<\/ (X, %)
If we apply the well known Euclidean angle formula then

. (a,x) _ _ X
coqe) = NETET and co$d) = o where the angles

andd are the angles (a,x) and4(x,e) in Euclidean sense
(0<egd<m.

48?2 +log?((a,a) (x,x) 1) = 48% +log?((x,x))  (3.10)

It is easy to examine some special cases using equation
(3.10) of the equidistance surface.

Let us consider that case, whd?e= (1,a,0,0) and(a #
1), i.e. P, lies on thex-axis andP; # P».

It is clear that in this case = & holds and by (3.10) we
obtain: Figure 6: The equidistant surfacgp, p, with fixed

P1(1,1,0,0) andP, : (1,4,0,0), in this case the

2 -1 2
log™((a,a) (X, X)) =log"({x,x)) = equidistance surface is a spere in Euclidean

=/ Xx) = (a,a)¥4. (3.11) sense and if,(1,— 1,2 0), in this case the
equidistant surface is a plane without origin in
Thus8p,p, is an Euclidean sphere with centre in the origin Euclidean sense. These are the special cases

1/4

of radiusp = (a,a) discussed in Subsection 3.3.
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TIBOR DOSA

Aquidistant-, Eigen-Aquidistant- und

Selbst-Aquidistant-Kurven
in der euklidischen Ebene

Equidistant-, Own-Equidistant- and
Self-Equidistant-Curves in the Euclidean Plane

ABSTRACT

There are given two curves in the plane. We are looking
for the equidistant-curve of both in the following sense:
what is the geometric locus of the centers of the circles
that are tangent to both given curves? These points are
in the same distance from the two given curves. The own-
equidistant curve of a given curve is the locus of the cen-
ters of the circles that are twice tangent to the curve.
The self-equidistant curve of a given curve is the envelo-
pe curve of the circles that are tangent to the curve and
their centers lay on the curve too. The inverse problem is
inspected too, curves C; and Ce are given. Which is the
curve Cp so that Ce is the equidistant-curve of ¢; and cp?
About these curves few is known [3], [4], [5], perhaps be-
cause one needs for their calculation an efficient computer
algebra program. We have investigated only curves of po-
linomial equation with coefficients of integer numbers in
the Euclidean plane. We have used the computer program
Mathematica 5.2.

Key words: equidistant curve

MSC 2000: 14H50

Ekvidistantne, vlastito-ekvidistantne i svojstveno-
ekvidistantne krivulje u euklidskoj ravnini

SAZETAK

U ravnini su dane dvije krivulje. Trazimo krivulju koja je
od njih jednako udaljena u sljedecem smislu: sto je geo-
metrijsko mjesto sredista kruznica koje diraju obje dane
krivulje? Te tocke su jednako udaljene od dviju danih kri-
vulja. Vlastito-ekvidistantna krivulja dane krivulje je geo-
metrijsko mjesto sredista onih kruznica koje danu krivulju
dodiruju dva puta. Svojstveno-ekvidistantna krivulja da-
ne krivulje je anvelopa kruznica koje diraju danu krivulju,
a njihova sredista takoder leze na toj krivulji. Takoder se
proucava i obrnuti problem, dane su krivulje ¢; i Ce. Koja
je krivulja ¢y tako da je Ce ekvidistantna krivulja za ¢ i
C2? O ovim krivuljama se malo zna, npr. [3], [4], [5], moz-
da zbog toga sto njihovo izracunavanje zahtijeva efikasni
algebarski program. Proucavali smo samo krivulje €ije su
jednadzbe polinomi sa cjelobrojnim koeficijentima u eu-
klidskoj ravnini. Koristili smo program Mathematica 5.2.

Kljucne rijeci: ekvidistantna krivulja

1 Aguidistant-Kurven d. Wir kénnen die Funktioi® einer KurveC wie folgt be-

stimmen. Wenn die Kurv€ nur aus dem PunlR(x,y) be-
Zwischen zwei Staaten gibt es einen See. Wir suchen diesteht, dann gilt:
Grenzlinie durch den See, die von beiden Ufern die gleiche ) s 0
Entfernung besitzt. Im allgemeinen, seien zwei ebene Kur- G(X0,Y0,d) = (X—X0)=+ (Y —Yo)= —d“=0.
ven gegeben. Wir suchen den geometrischen Ort der Mit-
telpunkte der Kreise, die zu beiden Kurven tangent sind.
Diese Kurve ist die Aquidistant-Kurve der beiden anderen,
weil deren Punkte gleich weit von den beiden entfernt sind.

Sei das Polynork (x,y) = 0 mit ganzzahligen Koeffizien-
ten die Gleichung der Kurv@. Die Gleichung des Kreises
um den Punktxo,Yo) ist: (X — X0)? + (Y — Yo)?> — d? = 0.
Wenn wir aus diesen beiden Gleichungeglimieren, er-
Sei G(xo,Yo0,d) die Distanz-Funktion einer Kurve, dass halten wir eine Gleichunbl(x, Xo,Yyo,d) = 0 . Der entspre-
heisstG(xo,Yyo,d) = 0, wenn der Punkfxo,Yo) von der  chende Mathematica Befehl ist:

Kurve in einer Distanz vou liegt. G(Xp, Yo, d) ist eigent-

lich die Gleichung der Parallelkurve der Kurve mit Distanz H = ResultantF (x,y), (X — Xo)? + (Y — Yo)* — d2,y].
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2. Die Aquidistant-Kurve der Lemniskate und des Null-
¢ punktes ist eine Hyperbel, vgl. Abb. 3.
(X0, Yo)

Abbildung 1 B[O <

Weil der Kreis tangent zur Kurv€ ist (Abb. 1), und der
tangente Punkt als doppelter Schnittpunkt gilt,Xstine
doppelte Wurzel der Gleichurtg = 0. Daraus folgt, dass
x auch eine Wurzel der Gleichura /dd = O ist. Wenn
aus diesen beiden Gleichungesliminiert wird, erhalten Abbildung 3
wir die Distanz-Funktion der Kurv€. Wenn zum Beispiel

C eine Parabel ist, dann:

v 2 3. Die Aquidistant-Kurve der Konchoidé? + y?)(y —
F(X’ y) - y Xt = 0 2 2 .

B 5 5 2 42 1) = y*= und des Nullpunktes besteht aus zwei Kur-
H = (X=X0)"+ (X —y0)" — ven. Diese sind die Parallelkurven der Parabel (ggk)
G(Xo, Yo,d) = —1/2x2 4 1/2 mit Abstand+1/2. lhre Gleichung lautet:
16(c? — 33 +Y0)3 — (@ —Yo)2(1+4yo)2 + 8d4 (1~ 10yo—2y3) 16+ A (11 16y -+ 4y%) + X2(—1 — 60y + 24y% + 64y%) +
(14 4y0) (1— 1290 + 83+ 4@(5-+ 2y0)) = O YOy =(1+8)7 =0, vgl. Abb. 4.
fur alle Punkte(xo, yo) der Ebene.

SeienCy, C; zwei Kurven undG;, G, ihre Distanz-

Funktion. Wenn wir aus den letztereheliminieren, er- 1

halten wir die Gleichung der zG; und C, gehérenden

Aquidistant-Kurve. Es ist trivial, dass: 0
- die Aquidistant-Kurve von zwei Punkten die Stre- a

ckenhalbierende ist;

- die Aquidistant-Kurve einer Linie und eines Punk-
tes, der nicht auf der Linie liegt eine Parabel ist;

- die Aquidistant-Kurve eines schneidenden Geraden- Abbildung 4
paares die Winkelhalbierende ist;

- die Aguidistant-Kurven von zwei Kreisen Kegel-
schnitte sind.

4. Die Aquidistant-Kurve des Zweiblattes? + (y +
1/2)2)2 = 4(y + 1/2)x*> und seines Knotenpunktes
Bei den folgenden Bildern sind die Grundkurve@,( (0, —1/2) hat eine dreifache Symmetrie, ihre Gleichung
Cz oderCy, Pr) griin, die Aquidistant-Kurven rot, die st 16(x2 +y2)2 1 24¢%(3 + 8y) + 8y2(9 — 8y) — 27 = 0, vgl.
Tangerj.t-Kreise blau. Der Einfachheit halber sind die tri- ppp 5.

vialen Aquidistant-Punkte an den Achsen weggelassen.

1. Die Aquidistant-Kurve der Kardioide und des Nullpunk-

tes ist ein Kreis, vgl. Abb. 2. s
. G
E
1 os G
Q
Q 0
C
&)
-1 -0.5 0 0.5 1 1.5
Abbildung 2 Abbildung 5
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5. Die Aquidistant-Kurve der Ellipse + 4y? = 4 und der
Linie y = —1 hat die Gleichung® + x*(—10+ 8y + 14y?) +
x2(9—132%—194y? —68y> +y*) +108y— 72y° +32y* — 4y® =0,
vgl. Abb. 6.

4

3

1

Abbildung 6

2 Eigen-Aquidistant-Kurven

Die Eigen-Aquidistant-Kurve einer gegebenen Ku@e
ist der geometrische Ort der Mittelpunkte der Kreise, die
zweimal zuC tangent sind. Sel5(x,y,d) die Distanz-
Funktion der KurveC. Wenn fir einen PunkP(x,y) d
doppelte Wurzel vorG ist, dann ist der Kreis un® mit
Radiusd zweimal tangent zC, das heisst? ist ein Punkt
der Eigen-Aquidistant-Kurve. Werthdie zweifache Wur-
zel vonGist, dann isd auch eine Wurzel vodH /od = 0.
Wenn wird aus den beiden Gleichungen eliminieren, er-
halten wir die Gleichung der Eigen-Aquidistant-Kurve.
Der entsprechende Mathematica Befehl ist:

Q= ReSUItanFG(Xa Y, d)a D[G(Xa Y, d)a d]7d]

Die FunktionQ(x,y) besteht meistens aus mehreren Fak-
toren, relevant sind der von der Eigen-Aquidistant-Kurve
und der von der Evolute. Die Evolute kann auch als
degenerierte Eigen-Aquidistant-Kurve betrachtet werden

weil der Beruhrungspunkt des Krimmungskreises doppelt
zahlt.

1. Es ist bekannt, dass die Eigen-Aquidistant-Kurve der
Strophoidex?(1+y) = y?(1—y) die Parabely = 1/4x?,
sowie eine Halbgerade ist. Der Puriktist das Zentrum
der maximalen Krummung, vgl. Abb. 7.

Abbildung 7

2. Die Eigen-Aquidistant-Kurve der Agnesi-Kuryg¢l +
x?) = 1. Auf dem oben gezeigten Weg erhalten wir die im-
plizite Gleichung der Evolute

116648 + x8(48931— 276y — 151682 + 7024/ + 96y* —
1536/° +1024/%) — 12x*(—6687+ 2036 %+ 37182 — 1908/° —
106y +524y° — 276/ — 44y" + 36y8) — 24x?(— 17253+ 7830+
216072 — 13230 + 5393/ 4 600y° — 1424/° + 768/ + 64y°) +
16(—1+2y)3(27+8y%)2 =0,

und der Eigen-Aquidistant-Kurve

104857610 + 16x8(225333 — 208414 — 862732 —
389137 + 81924) + 16x6(288225— 704106 + 21501G° +
2217687 + 71873 + 66016° — 161932 — 384" + 256,%) —
8x*(—257337 + 146286Q — 2120256° + 1203336° —
1103944 + 151968° + 2144005 + 3264G7 — 1868858 —
512° + 1024/10) + 8x?(—52488 — 40022y + 1293975 —
190026@° + 2035854 — 1343413° + 9010848 — 3777137 +
2028892 — 27200° — 2688/10 4 1280/ + 512¢'2) — (5 4y +
4y?)2(27+8y°)% = 0.

Die gelbe Kurve ist die Evolute, die Punkte P sind ihre
Spitzen. Die rote Kurve ist die Eigen-Aquidistant-Kurve,
aber nur die Punkte von den beiden Punkten P nach oben
sind aquidistant, vgl. Abb. 8.

-2 0 2

Abbildung 8

3. Nehmen wir die Lissajous-Kurwe= cog, y = sin2.

Ihre implicite Gleichung lautel® = 4x?(1— x?). Die gelbe
Kurve ist die Evolute, vgl. Abb. 9. Triviale Aquidistant-
Punkte sind digi-Achse und die Strecke-3,3) auf der
x-Achse. Uberraschenderweise gibt es eine sternférmige
Kurve in der Mitte. Die Punkte ausserhalb von den Punkten
P sind keine Eigen-Aquidistant-Punkte. Die PunRtsind

die Zentren der maximalen Krimmungen. Die Gleichung
der roten Kurve ist-6871947673¢%+ < < 56 Terme>>
+42845606719488% =0, vgl. Abb. 10.
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2
D

| e
=TS

Abbildung 10

4. Die Eigen-Aquidistant-Kurve der einfachen Lamesche-

Kurve y* + x* = 1 bildet eine schone sternférmige Kur-
ve. Ihre Gleichung lautet 10737418% + y88)+ <<
527 Terme>>= 0, vgl.Abb. 11.

o
o
[

Abbildung 11

5. Nehmen wir noch die Lissajous-Kurve:= sin2 +
1/4cos3, y = —cos2 — 1/4sin3. |hre Eigen-
Aquidistant-Kurve sieht noch dekorativer aus, die ent-
sprechende Gleichung ist 78382+ << 568 Terme>>
+(246037500+ 19683062)y** = 0, vgl. Abb. 12.
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Abbildung 12

3 Selbst-Aquidistant-Kurven

Die Selbst-Aquidistant-Kurve einer Kun@ ist die Hiill-
kurve der Kreise, die tangent Zlisind und deren Mittel-
punkte auf der Kurv€ liegen. Sei F(x,y)=0 die Gleichung
der KurveC undG(xg, Yo,d) ihre Distanz-Funktion.

\
Abbildung 13

Die Gleichung des Kreises K igk— Xo)? + (y — Yo)? = d?
wobei F(xo,Yo) = 0. Diese zwei Gleichungen definieren
eine Kreisschar. Ihre Hullkurve erhalten wir so:

- zuerst eliminieren wid aus K und G, wir erhalten
H (XY, %o, Y0);
- dann eliminieren wirxg ausH und F, wir erhalten
J(X,Y,Y0);
- schliesslich eliminieren wiyp ausJ undaJ/dyo.
1. Die Selbst-Aquidistant-Kurve der Paralyet x? hat die
folgende Gleichung*(1+ 2y) + 2x?(1+y)(~5— 10y +y?) —
2(1+2y+3y?)?2 =0, vgl. Abb. 14.

SE

-4 -2 0 2 4

Abbildung 14
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2. Zu der Elipse (x/2)2 +y> = 1 gehérende
Selbst-Aquidistant-Kurve hat die folgende Gleichung
196y10 + y8(—6132+ 953¢2) + 4y6(9738— 7179 + 463*) +
2y*(139212+ 1097192 — 24354 + 899¢C) 4 4y?(—424683—
1761752 + 8601+ — 89496 + 218¢8) + (36 + x?)(441 —
138¢ +13¢*)2 =0, vgl. Abb. 15.

4
2
of G
0 _/ -1.5 -1 -0.5 0 0.5 1 1.5
B % Abbildung 17
E
-4
I 4 Inverse und offene Probleme
Abbildung 15 Gegeben sind zwei KurveZy undCe. Wir suchen die Kur-

veC,, dasLC, die Aquidistant-Kurve voi€; undC; ist. C,
ist einfach die Hullkurve der Kreise, die tangentzusind,
und ihre Mittelpunkte au€e liegen.

3. Die Selbst-Aquidistant-Kurve der Hyperbel — y> =

. o 5 . B
1 hat die folgende Gleichund6y® + 16,3(7 + 3:2) + 1. SeiC; die Linie derx-Achse undCe der Kreisx? +y2 = 1.

8Y6(—31 — B2 + 4x%) — By (—42 + 1592 + 44K + 4E) — Die Gleichung der obigen Kreise lautet:

y2(207+ 8x2(—100— 159 + 8¢ + 68)) + (9—x2) 3+ 42(1+  (X—X0)*+(Y—Y0)?—Y¥5=0.  (EK)

x?))2 =0, vgl. Abb. 16. Ihre Mittelpunkte liegen au€e:
x%+ys—1=0. (EE)

Zuerst eliminieren wikg aus EK und EE:
R1 = ResultantEK, EE,xq],

dannyy ausoR1/dyo:

R2 = ResultaniR1, D[R1,yo], Yol

Wir erhalten so die Gleichung der Kur@, sie ist die Ne-
phroide 4x% 4+ y? — 1)3 = 272, vgl. Abb. 18.

2
G
1 Q
Abbildung 16 oG \%

-1
4. Die Gleichung der Selbst-Aquidistant-Kurve der Stro- -2
phoide ist 430+ << 248 Terme>> +4y3° =0, vgl. Abb. hete0s 008 L s 2
17. Abbildung 18
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2. SeiC; die Konchoide(x3 + y3)(yo — 1) = y3 und Ce viele Kurven, deren Eigen-Aquidistant-Kurve auch einen
der PunktPy(0,1). Wir suchen die Hullkurve der Kreise Parabel-Bogen besitzt. Nehmen wir die folgende Kurve
(Xx—X0)?+ (Y —Y0)? = X5+ (Yo — 1). Eliminierendxo, Yo, dritten Grades (griin)y8 + 8y(x> — 1) + (2x— 1)2 = 0.
erhalten wir: Wie die blauen Kreise zeigen, sind die Punkte der Parabel
W0 4 XB(7 — 12y + 5y2) + 28(297 — 104y + 422 — 247 + y = x2 aquidistant, vgl. Abb. 20.

5y*) + 24 (—61— 492y + 7832 — 304y° 4 105/* — 36y° 4 5y°) +

X2(—1+Y)3(355+ 345/ — 2422 + 823 — 33y* 4+ 5y°) + (—3+ 2
y)(-1+y)°=0
Die Konchoide ist die Aquidistant-Kurve der gelben Kurve '
und des PunkteR;, vgl. Abb. 19. 1
0.5
3 0
2 /%Q\ 0.5
\J\E
G -1
1 Py
0 \\(R Q/ 1.5 -1 0.5 0 0.5 1 1.5 2
1:/ Abbildung 20

4. Die Frage der Anti-Selbst-Aquidistant-Kurve bleibt
offen. Z.B. welche Kurve hat die Parabel als Selbst-
Aquidistant-Kurve? Gibt es Kurve@;,C, so, das€, die

3. Wie wir schon gesehen haben, ist die Parabel die Eigen-Selbst-Aquidistant-Kurve voi€; ist und C; die Selbst-
Aquidistant-Kurve der Strophoide. Es gibt aber undendlich Aquidistant-Kurve vorc, ist?

Abbildung 19
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ABSTRACT

In this paper we prove that for a given axis the centers
of all central collineations which transform a given proper
conic C into a circle, lie on one conic cc confocal to the
original one. The conics C and ccC intersect into real points
and their common diametral chord is conjugate to the di-
rection of the given axis.

Furthermore, for a given center S the axes of all central
collineations that transform conic c into a circle form two
pencils of parallel lines. The directions of these pencils are
conjugate to two common diametral chords of ¢ and the
confocal conic through Sthat cuts C at real points.

Finally, we formulate a theorem about the connection of
the pair of confocal conics and the fundamental elements
of central collineations that transform these conics into
circles.

Key words: central collineation, confocal conics, Apollo-
nian circles

O perspektivnim kolineacijama koje danu koniku
preslikavaju u kruZnice

SAZETAK

U ¢&lanku je dokazano da srediSta svih perspektivnih ko-
lineacija koje s obzirom na zadanu os preslikavaju danu
koniku ¢ u kruZnicu, leZe na jednoj konici cc konfokalnoj s
poetnom konikom. Konike C i cCimaju realna sjecista, a
njihova zajedni¢ka dijametralna tetiva konjugirana je smje-
ru zadane osi kolineacije.

Nadalje je dokazano da osi svih prespektivnih kolineacija
koje s obzirom na zadano srediste S preslikavaju danu
koniku € u kruznicu, &ine dva pramena paralelnih pravaca.
Smjerovi tih pramenova konjugirani su zajedni¢kim dijame-
tralnim tetivama konike € i njoj konfokalne konike koja
sadrZi to¢ku Si realno sijece C.

Na kraju je formuliran teorem koji govori o vezi para kon-
fokalnih konika i temeljnih elemenata perspektivnih koline-
acija koje te konike preslikavaju u kruZnice.

Kljuéne rijeci: perspektivna kolineacija, konfokalne
konike, Apolonijeve kruZnice

MSC 2010: 51NO05, 51A05, 51M15

1 Introduction given a conicc and a pointS, we try to find all the axea

with which the central collineation with cent8and axisa
Central collineation is a classical and widely studied¢ran transformscinto a circle. These two problems are solved
formation in projective geometry. Basic properties of this in Section 3 and 4. Before these results, we briefly present
transformation can be found in any textbook of the field, the necessary facts about pencils of circles and confocal

including the well-known fact that it can transform any conics in Section 2.

proper conic into a circle. The standard way of applying The aim of this study is not purely theoretic. Our fu-
this fact in drawing is that a given conicthe centeSand  ture purpose is to classify special transformations, dalle
the axisa of the central collineation is chosen in a proper quadratic projections, which are geometric abstractidns o
way, using the most suitable, simplest transformation to omnidirectional vision tools and cameras [2]. This prac-
transferc to a circle. tical equipment is of central importance in robotics, and
In this paper we consider this problem in a more con- the.geqmetry of th_esg tools are.hegvily influenced by the
strained way. Given a conicand a linea, we try to find all ~ Projective geometric issues studied in the present paper.
the center$Swith which the central collineation with cen-  « Supported by Janos Bolyai Scholarship of Hungarian Acadeim

ter S and axisa transformsc into a circle. Alternatively, Sciences.
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2 Pencilsof circlesand confocal conics all circles of the pencil. On the radical axis all circleslvét
pencil induce the same polar involution that is hyperbolic,
In this section we collect some basic properties of a pencil elliptic or parabolic, if the pencil is elliptic, hyperbolor
of circles and a range of confocal conics. Both structures parabolic, respectively. Every pencil contains its rallica
will be used throughout the following sections, so it may axis and the line at infinity as a splitting circle. Only the
be worth to recall the necessary facts about them. Theseéhyperbolic pencils contain two imaginary circles that are
issues can be found in several books of the field, e.g. intwo pairs of isotropic lines with real intersection poirftat
[1], [3], [4], [B], [6], [7], [8]. are called the Poncelet’s points.

A pencil of circlesis the set of circles which pass through Appolonian circlesare two pencils of circles such that ev-
two given points. It is an elliptic, hyperbolic or parabolic ery circle of the first pencil cuts every circle of the sec-
pencil if these intersection points are real and different, ond pencil orthogonally, and vice versa. If the first pencil
imaginary or coinciding, respectively. See fig. 1. is elliptic, the second is hyperbolic. If the first pencil is

The circles of elliptic, hyperbolic and parabolic pencilg ¢~ Parabolic, the second is parabolic, too. See figures 2, 3.

the central line into the pairs of elliptic, hyperbolic and All circles of one pencil induce the same polar involution
parabolic involution, respectively. Every point on the+ad on its radical axis. This involution is the same as the inter-
ical axis has the same point’s circle power with respect to section involution that the corresponding Apollonian pen-

central line central line central line

. N . X Poncelet points . \
radical axis radical axis radical axis

midpoint midpoint

C midpoint

Figure 1: An elliptic, hyperbolic and parabolic pencil of circles asgown in figures a, b and c, respectively.

Figure 2: One family of elliptic and hyperbolic pencils Figure 3: One family of two orthogonal parabolic pencils
of orthogonal circles
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Figure 4: A is the pole of a with respect to ¢, and O is the midpoint of tifeogonal pencils of circles. The conic ¢ and the
line a with real and different, imaginary or coinciding imgection points, together with the corresponding
Apollonian circles, are shown in figures a, b and c, respetyiv

cil induces on its central line. For Apollonian circles is the point at infinity, all confocal conics are parabolas. |
the Poncelet’s points of the hyperbolic pencil are the La- all other cases a confocal range consists of ellipses and hy-
guerre’s points of the elliptic pencil. perbolas. Through every poiRtin the plane, two conics

For every conicc and a linea such thatA® (the point at of a confocal range pass, and they cut orthogonally. If one
infinity of the line a) is an external point o€, exists one  of these conics is an ellipse, the other one is a hyperbola
family of orthogonal circles such that one pencil cuts the and vice versa.

line a at the same points as the comicand another cuts
the linea into the pairs of polar involution induced lzyon
a, see fig. 4.

The tangent lines & to these conics bisect the angles be-
tween the tangents froRto any other conic of the confo-

cal system (these tangents can be real and different, imag-
The family ofconfocal conicss a range of conics defined  inary! or coinciding). The line®FR andPF, are equally

by two pairs of isotropic tangent lines that always have two inclined to the tangents froffd to any one of the conics of
real intersection points called real fdei, F». If one focus the system, see figures 5, 6.

Figure 5: The range of confocal ellipses and hyperbolas  Figure 6: The range of confocal parabolas

1About the real bisectors of imaginary lines see [6, p. 70].
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3 Collineationswith given axis

Let c anda be a given conic and a line, and T be the
point at infinity on the linea. In this section we consider
the following problem: where are the centers of all central
collineations with a given axia that transform a conic
into circles?

Lemmal If a point A° lies on the conic c or if it is
an internal point of c, there does not exist any central
collineation with the axis a that transforms c into a circle.

PrROOFE Since the real or imaginary character of points
and lines is invariant under a central collineation, then it
transforms interior and exterior of a given cogimto the
interior and exterior of the image of For every circleA”

is an external point. Therefore, all parabolas and hyperbo-

las that pass through” as well as all hyperbolas with”
as an internal point, could not be transformed into a circle
by any central collineation with the axés

Theorem 1 For a given straight line a and a conic c,
where A’ € Extc, the centers of all central collineations
with the axis a that transform c into circles lie on one conic
cc that is confocal to c. If a is not parallel to any axis of c,
the conic cc is an ellipse, hyperbola or parabola, if c is a
hyperbola, ellipse or parabola, respectively.

PrROOF,
e Letaandc (A” € Ext g intersect in two different points

D1, Dy, let P(c,a) be a pencil of circles that intersect the
line a at the same point®; andD, and letO be the mid-
point of P(c,a). The linea is the radical axis of?(c,a),
the line aa throughO orthogonal toa is its central line
and the pencil is elliptic or hyperbolic D1, D, are real
or imaginary points, respectively. Létbe the pole ofa
with respect tac. OAis the diameter o conjugate to the
direction ofa. Let T andT be the intersection points of the
diameteiOA and the conic. If cis a parabola one of these
points is the point at infinity. See fig. 7.

For every circlec € ?(c,a) there are two central
collineations with the axia that transfornt into ¢’. These
collineations transform the diametral chofd@ of c into

the diametral chord; T, of ¢’ lying on aa. The intersec-
tions of corresponding rayETy, T, or TTp, T Ty are the
centersSt and S of these collineations, respectivel§g
and S’ are collinear withA and A, whereA' is the pole

of ¢’ with respect taa, because polarity is invariant under
a central collineation. Since the points and T, corre-
spond involutory (the pair of intersections dfe ?(c,a)
andaa), then varyingc, the mapping§ T, — T T and
TT, — TT; define the same projectivityT ) A (T). The
resulting curve of this projectivity is a conax that con-
tains the centers of all central collineations with the axis
a which transfornc into circles. The point§ andT that
correspond to the splitting circle’(breaks up into the line

a and the line at infinity) are excluding as the centers of
requested central collineations.

Figure 7: In figure a, conic c is a hyperbola,DD- are real points and cc is an ellipse that cuts aa at imaginasings. In
figure b, conic cis an ellipse, DD are imaginary points and cc is a hyperbola that cuts aa at Rbetts points
of (c,a). In figure c, conic c is a parabola, ) D, are real points and cc is a parabola that cuts the line aa at

the pair of imaginary points.
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The pointS! is the intersection of common tangentsoof
andc that can be real or imaginary. Therefore, a llme
that passes throudst andC’, whereC' is the center of the
circle ¢, bisects the anglgF.S'F, (whereFy, F, are the
foci of ¢) and it is the tangent line afc at S. Namely, if
we suppose thdi cutscc at any other poin# S (SIS
cutsaaatA’ # C'), thenSwould be the third solution that
transformc into ¢’ which is impossible according to the

previous considerations. Thus, the tangent line at every

point S of the conicce bisects the anglgF S'F, i.e. Fy
andF; are the foci ofcc, see fig. 7. The conicc cuts the
line aa at two double points of the involutiofy, «— T,
that are imaginary ifP(c,a) is elliptic or real Poncelet’s
pointsPy, P if it is hyperbolic.

Since the conics andcc intersect each other in the real
pointsT, T, ccis a hyperbola, ellipse or parabolagifs an
ellipse, hyperbola or parabola, respectively.

e Let a be the tangent of with a touching pointO and
let T be another intersection point ofind the diameter of
¢ throughO (if cis a parabolaT is the point at infinity).
Let ¢’ be a circle with the centeZ’ that touches at the
point O and letT’ be another intersection point of the di-
ameter ofc’ throughO andc'. It is clear that there exists a
unigque central collineation with the cent@and the axis
that transforml andT’ and the conic into ¢/, see fig. 8.
Since the conics andc’ have common tangent lings to
throughS(real and different, imaginary or coinciding) they
also have a common bisectoof these tangents through
This lineb also bisects the angléF SF, and is the tangent
at Sof a coniccc that is confocal tac and passes through
the pointsT andO. Thus, every point on the conax is

the center of one central collineation that transfooirgo

a circle. On the other hand, every ciraec P(c,a) de-
fines the unique solutio8that is the touching point of the
tangent from C’ to the conicce (another tangent through
C' to ccis the lineaa with the touching poin©), i.e. all
solutions lie on the conicc.

Since the conics andcc intersect each other in the real
pointsO andT, ccis a hyperbola, ellipse or parabolagif
is an ellipse, hyperbola or parabola, respectively.

e Ifthe lineais perpendicular to one axis of the cogjall
centers of central collineations that transfarinto circles
lie on the central lineaa of the pencil?(c,a). Namely,
for everyc' € P(c,a) there existsS € aathat is the inter-
section of common tangent linesofndc’ (these tangent
lines can be real or imaginary). The poBit the center of
central collineation that transfornesinto ¢’. The lineaa
is the part of a splitting conic that is confocaldoIn the
cases wheuis an ellipse or hyperbola, the confocal conic
splits into the axes of, and ifc is a parabola it splits into
its axis and the line at infinity. O

In the case whenis an ellipse, the coniccis a hyperbola
with two real points at infinity and the pencil of circles
P(c,a) contains two circles into which the given ellipse is
transformed by an affinity. The construction of these cir-
cles is a solution of a classical task in constructive geome-
try: The centers of these circles are the intersection point
of the lineaa and one circle, where the diameter of this
circle is formed by the intersection points of the given line
a and the axes of the ellipse.

Figure 8: The illustrations of the above described construction ferBSxt ¢, Sc Intc and Sc ¢ are shown in figures a, b

and c, respectively.
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4 Collineationswith given center

For a given pointS and a conia, the following problem

is considered in this section: where are the axes of all cen-

tral collineations with given cent&that transform a given
proper conia into circles?

In the following, byccs we denote the confocal conic to
that passes throudghand cuts at real points.

Theorem 2 For a given point S and a conic c, the axes of
all central collineations with the center S that transform c
into circles form two pencils of parallel lines with direc-
tions conjugate to two common diametral chords of ¢ and
CCs.

PROOF. Let c andSbe any conic and a point and lebe
the bisector of the tangent lines othroughS. If cis an
ellipse or parabold bisects the internal angléF Sk and

if cis a hyperbold bisects the external angid-;SF,. For
every pointC’ € b there exists one circle such that and
¢’ have common tangent linés t, throughS(real and dif-
ferent, imaginary or coinciding). Let the common diame-
tral chords ofc andccs be XX andYY (if ¢ is a parabola
X andY coincide with the point at infinity) and letandy
be the tangent lines & andY, respectively. The lin® is
the tangent line ofcs at S. Let us consider any two lines
a1 || x, S¢ a1, anday || y, S¢ az and letO; andO, be the

midpoints of the polar involutions that contdnduces on

a; anday, respectively. According to Theorem 1, there are
two central collineations with the cent8and axesy and

a, that transfornt into circlesc] andc,, respectively. The
centers of these circles are the intersection pointsafd

the linesaa; andaap, perpendicular t@; anday through

the points0; andO,, respectively. Thus, for ever/andS
there are two pencils of parallel lines such that every cen-
tral collineation with the cente®and the axis that belongs
to one of the pencils transfornesnto a circle. See fig. 9.

On the other hand, it is transformed to a circle by a cen-
tral collineation with the cente® then the polar involu-
tion induced byc on the vanishing line is transformed to
the circular involution on the line at infinity. The isotrapi
lines througl cutc into four imaginary points and among
six lines that join them only two are real. These two
real sides of the complete quadrangle (determined with the
four intersections ot and the isotropic lines throug®

are the vanishing lineg; andv, of the requested central
collineations. Thus, there are only two directions for axis
of central collineatios with the cent& that transformc

into circles. The lines, v» pass through the pole df
with respect toc and must be excluded from the pencils
(a1) and(ay) as the axes of central collineations because
they correspond with the isotropic lines througlin the
correspondences — ¢} anda; — C,, respectively.O]

Figure 9: Circles ¢ and ¢, are the images of ¢ under the central collineations with teeter S and axes;and & with
vanishing lines yand v, respectively. For any other central collineation with tamS that transforms c into a

circle, the vanishing line is eithen\or vs.
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5 Joint collineations of confocal conics

Finally we provide a consequence of the above discusse
theorems proving a strong relationship among Apollonian
circles, confocal conics and the fundamental elements of
central collineations which transform them to circles.

If ¢ andc, are proper conics with a cent€rand common
diametral chordXX andYY, then for every poina € XX,
A+£C (BeYY, B#C) the pair of polar linesy, a, (by,
by) of A (B) with respect ta; andcy, respectively, are or-
thogonal lines intersecting at a poie XX (B € YY) that
is conjugate tA (B) with respect to the coniag andc;.
See fig. 10.

— / -
|

AN
| <7 N
L XDKLEY ) N o
\/ \ / ¢ //‘ \ j
v —

Figure 10: The polar lines aand & (b; and kp) are par-
allel to the tangent lines at X (Y) of conics c
and @, respectively.

Theorem 3 Let ¢ and ¢ be proper confocal conics with
a center C and common diametral chord¥>&nd YY . Let
a; and & (b; and bp) be any pair of lines conjugate toX
(YY) with respect to cand @, respectively, intersecting at
a pointAc XX, A#C (B < YY,B#C). Then, the cen-
ters §,S of all central collineations with axis@ ap (b,
b,) that transform g, ¢, into circles lie on the conicg ¢y,
respectively.

Varying § € ¢; and $ € ¢, the image circles form Apollo-
nian circles with central linesa a; (b, by).

The tangent lines at;Sand $ of conics ¢ and ¢ cut the
central lines a, a1 (b2, by) into the centers of circles that
correspond to the touching pointg 8nd $ as the centers
of collineations, respectively.

PrRoOFE The proof follows directly from the proof of the-
orem 1, properties that are illustrated in fig. 4 and fig. 10
and the fact that confocality of conics and orthogonality of
circles are symmetric relations. See figures 11, 12 and 13
]

In the following figures the properties listed in theorem 3

are presented. These figures as well as all previous are pro-

duced in the programathematica 7

Figure 11: All central collineations with the green (blue)
axis and a center on the blue (green) conic
transform the green (blue) conic into green
(blue) circles. The directions of the axes in fig-
ures a and b are conjugate to the common dia-
metral chords of confocal conics. In both fig-
ures, the property that the tangent line at a cen-
ter of collineation passes through the center of
image circle is pointed out for the pointg &nd

S.
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Figure 12: The illustration of theorem 3 for confocal
parabolas ¢ and ¢.
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Figure 13:If the axes aand g coincide with the tangent
lines at the intersection point of @and @, the
image circles form the family of parabolic pen-
cils.
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