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Abstract. The Rubik’s cube is a famous puzzle in which faces can be moved
and the corresponding movement operations define a group. We consider here

a generalization to any 3-valent map. We prove an upper bound on the size of

the corresponding group which we conjecture to be tight.

1. Introduction

The Rubik’s cube is a 3-dimensional toy in which each face of the cube is movable.
There has been extensive study of its mathematics (see [7]). On the play side
the Rubik’s Cube has led to the creation of many different variants (Megaminx,
Pyraminx, Tuttminx, Skewb diamond, etc.) The common feature of those variants
is that they are all physical and built as toys.

Our idea is to extend the original rubik’s cube to any 3-valent map M on any
surface. To any face of the map we associate one transformation. The full group
of such transformations is named Rubik(M) and we study its size and its natural
normal subgroups.

A well studied extension [5, 4, 3, 8] of the Rubik’s cube is the n × n × n-cube
where the 3-lanes of the cubes are extended to n. There has also been interest [10]
in cryptographic applications of Rubik’s Cube. Thus the large class of groups that
we build could be of wide interest in computer science.

In Section 2, we construct the Rubik’s cube transformation of the map. In
Section 3, we explain how to use existing computer algebra systems such as GAP in
order to work with the Rubik’s groups considered. In Section 4 we define several
subgroups of the Rubik group and prove a bound on the size of the Rubik group
in the oriented case. In Section 5 several possible extensions and further works are
mentioned.

2. The construction of the Rubik group from a 3-valent map M

In this section we use M to denote a 3-valent map. By V (M), E(M), respectively
Face(M), we denote the set of vertices, edges, respectively faces of M .

For any face F of M we define a side movement sm(M,F ) to be a movement
in one direction of a face F . This is illustrated in Figure 1. If the face contains p
edges then the element sm(M,F ) has order p.

For a set S of elements of a groupG we defineGroup(S) to be the group generated
by S. Using this we can define the Rubik’s group:

Rubik(M) = Group({sm(M,F ) for F ∈ Face(M)})
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Figure 1. The action of the side movement

Rubik(Cube): Rubik’s Cube. Rubik(Dodecahedron): Megaminx

Figure 2. The Rubik construction for Cube and Dodecahedron

For the Cube and Dodecahedron this is known as Rubik’s cube and Megaminx,
see Figure 2 where the toy can be represented physically.

A corner of a map M is a pair (F, v) with v a vertex contained in a face F .
A side edge of a map M is a pair (F, e) with e an edge contained in a face F . A
3-regular map M with v vertices has exactly e = 3v/2 edges. It will have 3v corners
and 2e = 3v side edges. By Corner(M), we define the set of corners of M .

The face movement sm(M,F ) acts on the set of corners and the set of side edges.
This corresponds directly to the faces of the Rubik’s cube.

3. The computer Algebra side of things

We present the group Rubik(M) as a permutation group on the corners and side
edges. This way of presenting the group follows [11] 1 where the standard Rubik’s
cube was considered.

For the example of Prism3 plane graph, we can number the corners and side-
edges according to Figure 3. The side-movements generators of Rubik(Prism3)
can then be expressed as the following permutations:
gap> RubikPrism3:=Group([(31,35,33)(36,34,32)(3,19,11)(5,21,13)(8,24,16),

(28,27,25)(30,28,26)(6,14,22)(4,12,20)(1,9,17),
(1,6,8,3)(4,7,5,2)(17,35,16,25)(19,31,14,27)(18,36,15,26),
(19,17,22,24)(18,20,23,21)(7,28,10,34)(8,27,9,33)(6,29,11,35),
(9,14,16,11)(12,15,13,10)(1,31,24,29)(2,32,23,30)(3,33,22,25)]);

The advantage of this approach is that there are very efficient implementations
of permutation group algorithms (GAP) which can address in an efficient way many
questions one may have about a permutation group.

1See also an example in https://www.gap-system.org/Doc/Examples/rubik.html
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Figure 3. Numbering of corners and side-edge of Prism3

One famous problem in Rubik’s cube group theory is to find the minimal number
of moves to go from one configuration to another, in other words to find the diameter
of the Cayley graph of the group with the side moves as generators (see [9]). The
GAP computer algebra software does not provide a solution to that problem, but it
allows to express an element of the group in terms of the generators, that is find
an expression, possibly not minimal.

More specific functionality for the computation is available in the GAP package
[6].

4. Subgroups of Rubik(M)

The group Rubik(M) acts not only of the corners and side edges, but also
on the vertices and edges. To represent those actions we use subscript such as
sm(M,F )edge and denote the corresponding group Rubik(M)edge.

Lemma 1. Given a map M and a face F we have:
(i) The signature of sm(M,F )side edge is 1.
(ii) The signature of sm(M,F )vertex is equal to the signature of sm(M,F )edge.

Proof. (i) If F is a face with p sides then F contains p side edges (F, e), each side
edges is adjacent to another side edge (Fe, e). The side generator sm(M,F ) has one
cycle formed by the side-edges (F, e) and another cycle formed by the side edges
(Fe, e). Each of those cycles has the same length and so the signature of sm(M,F )
acting on the side-edges is 1.

(ii) If F is a face with p sides then it contains p edges and p vertices. The action
on each of them is a cycle of length p. So their signature is the same. �

We now consider what additional properties can be obtained if the map M is
oriented.

Definition 1. Assume M is an oriented map. Every vertex v of M is contained
in 3 corners Cv = {c1, c2, c3}. Since M is orientable, we can assume that Cv is
oriented in the direct way.

We denote by OrMap(M) the set of permutations of the corners that preserve
the triples and their orientation.

Given two corners c, c′ we call sh(c, c′) the number k of rotations r by 2π/3 such
that rk(c) = c′.

The orientability of the map will allow us to restrict the possibilities of mapping
the corners. We need the OrMap(M) set of map in order to define some properties

29
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below for the Rubik’s cube group. The shift is more complicated. If a vertex v has
Cv = {c1, c2, c3} in direct orientation then we have e.g. sh(ci, ci) = 0, sh(c1, c2) = 1
and sh(c1, c3) = 2.

Theorem 1. Let M be an oriented map. The following holds:
(i) For c, c′, c′′ corners we have sh(c, c′′) = sh(c, c′) + sh(c′, c′′) (mod 3)
(ii) For a function φ : V (M)→ Corner(M) such that φ(v) is a corner of V and

a function f ∈ OrMap(M) the expression∑
v∈V (M)

sh(f(φ(v)), φ(f(v)))

is independent of φ and denoted sh(f).
(iii) If f, g ∈ OrMap(M) then we have

sh(f ◦ g) = sh(f) + sh(g) (mod 3)

(iv) sh is a non-trivial function on OrMap(M).
(v) For f ∈ Rubik(M) we have sh(f) = 0 (mod 3).

Proof. (i) The equality follows by additivity of the rotational shift.
(ii) Let φ, φ′ two such functions. Then we define r(v) = sh(φ(v), φ′(v)). Define

first a(φ) =
∑

v∈V (M) sh(f(φ(v)), φ(f(v))), we then have:

a(φ′) =
∑

v∈V (M) sh(f(φ′(v)), f(φ(v)) + sh(f(φ(v)), φ(f(v))

+sh(φ(f(v)), φ′(f(v)))
= a(φ) +

∑
v∈V (M) sh(f(φ′(v)), f(φ(v)) +

∑
v∈V (M) sh(φ(f(v)), φ′(f(v)))

= a(φ) +
∑

v∈V (M) sh(φ′(v)), φ(v)) +
∑

v∈V (M) sh(φ(f(v)), φ′(f(v)))

= a(φ) +
∑

v∈V (M) sh(φ′(v)), φ(v)) +
∑

v∈V (M) sh(φ(v)), φ′(v))

= a(φ) +
∑

v∈V (M) sh(φ′(v)), φ(v)) + sh(φ(v)), φ′(v))

= a(φ) +
∑

v∈V (M) sh(φ′(v)), φ′(v))

= a(φ)

The equality sh(f(φ′(v)), f(φ(v))) = sh(φ′(v), φ(v)) comes from the fact that f pre-
serves the orientation of the corners. The equality

∑
v∈V (M) sh(φ(f(v)), φ′(f(v))) =∑

v∈V (M) sh(φ(v), φ′(v)) comes from the fact that f is permuting the vertices of

M .
(iii) Let f and g be two such mappings. We then have

sh(f ◦ g) =
∑

v∈V (M) sh(f(g(φ(v))), φ(f(g(v))))

=
∑

v∈V (M) sh(f(g(φ(v))), f(φ(g(v)))) + sh(f(φ(g(v))), φ(f(g(v))))

=
∑

v∈V (M) sh(g(φ(v)), φ(g(v))) +
∑

v∈V (M) sh(f(φ(v)), φ(f(v)))

= sh(g) + sh(f)

We have used that f preserves orientation and the fact that g permutes the vertices
in our rewriting.

(iv) Let us select a vertex v of M with Cv = {c1, c2, c3}. We set f(ci) = ci+1 for
ci ∈ Cv and f(c) = c otherwise. We find that sh(f) = 1.

(v) Let F be a face of M . We select a function φ such that phi(v) = (F, v) for
v and vertex contained in F and an arbitrary choice on other vertices.
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Setting f = sm(M,F ) we have

sh(f) =
∑

v∈F∩V (M)

sh(f(φ(v)), φ(f(v)))

It is easy to see that φ(f(v)) = f(φ(v)) for v ∈ F ∩V (M). Thus we get sh(f). Since
the side movement generate Rubik(M), by (iii) we get that for all f ∈ Rubik(M),
sh(f) = 0. �

Theorem 2. We have a sequence of group homomorphisms:

Rubik(M) = Rubik(M)corner,side edge → Rubik(M)corner,edge
→ Rubik(M)corner → Rubik(M)vertex

Proof. The equality Rubik(M) = Rubik(M)corner,side edge comes from the defini-
tion of the Rubik group. If the group acts on the side-edges, then it acts on the edges
and so we get the map Rubik(M)corner,side edge → Rubik(M)corner,edge. Dropping
the edge action gets us the mapping to Rubik(M)corner. Finally, a vertex is con-
tained in 3 faces and so in 3 corners. This defines a mapping from Rubik(M)corner
to Rubik(M)vertex. �

We define following subgroups from those homomorphisms: G1(M) = Ker(Rubik(M)corner,side edge → Rubik(M)corner,edge)
G2(M) = Ker(Rubik(M)corner,edge → Rubik(M)corner)
G3(M) = Ker(Rubik(M)corner → Rubik(M)vertex)

We can now use the above decomposition in order to get a conjectural description
of Rubik(M).

Theorem 3. Given an oriented map M the following holds:

(i) G1(M) is a subgroup of Z|E(M)|−1
2

(ii) G2(M) is a subgroup of the alternating group A|E(M)|.

(iii) G3(M) is a subgroup of Z|V (M)|−1
3

(iv) Rubik(M)vertex is a subgroup of A|V (M)| if all faces of M have odd size and
a subgroup of S|V (M)| otherwise.

Proof. G1(M) is formed by all the transformations that preserve all corners and
edges but may switch a side edge (F1, e) into another side edges (F2, e). Since every
edge is contained in two faces, this makes G1(M) a subgroup of the commutative

subgroup Z|E(M)|
2 . The group Z|E(M)|

2 contains some elements that switch just two
side-edges and are thus of signature −1. Thus by Lemma 1.(i) G1(M) is isomorphic

to a strict subgroup of Z|E(M)|
2 .

G2(M) is formed by the transformations that preserves the corners but will
permutes the edges. Thus we have that G2(M) is a subgroup of S|E(M)|. Since
elements of G2(M) preserves all vertices, the signature of their action is 1. By
Lemma 1.(ii) the signature of their action on edges is also 1. Therefore G2(M) is a
subgroup of A|E(M)|.
G3(M) is formed by all transformations that preserves the vertices but may

permutes the corners. Since the corners are oriented, the operation on each vertex
v may be encoded by an element xv of Z3. By Theorem 1.(v) we have sh(f) = 0
for each f ∈ G3(M). Thus we get

∑
v∈V (M) xv = 0. This means that G3(M) is a

subgroup of Z|V (M)|−1
3 .
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Figure 4. The Pyraminx toy

The side movements sm(M,F ) act on the vertices. For a face of size p the
signature is (−1)p−1. Thus if all faces of M have odd size then all side movements
have signature 1 and Rubik(M)vertex is a subgroup of A|V (M)|. If there is a face of
even size then it is a subgroup of S|V (M)|. �

Conjecture 1. (“First law of cubology”) Given an oriented map M with v vertices
and e edges the following holds:

(i) G1(M) is isomorphic to Z|E(M)|−1
2

(ii) G2(M) is isomorphic to A|E(M)|.

(iii) G3(M) is isomorphic to Z|V (M)|−1
3

(iv) Rubik(M)vertex is isomorphic to A|V (M)| if all faces of M have odd size and
S|V (M)| otherwise.

This conjecture has been checked for many plane graphs e.g. the ones with at
most 40 vertices and faces of size 6 or p with 3 ≤ p ≤ 5. This Theorem is proved
for the cube case in [7, Theorem 11.2.1], [1, Section 2.4] and [2, Theorem 1.3.24].

5. Possible extensions and open problems

There are many possible extensions of this work. First we could consider other
constructions so as to generalize all the existing Rubik’s cube variant toys to a
combinatorial setting. For example the Pyraminx (Figure 4) does not belong to
the family described here.

Proving the conjecture on the description of Rubik(M) appears to be a difficult
problem as the cube proofs seem difficult to generalize. Another research question
is to consider the classification of elements of order 2 of Rubik(M) as well as the
determination of the maximal order of the elements of Rubik(M) (see [2] for the
Cube case).

Much time and energy has been spent on playing on Rubik’s cube and this could
be done as well for Rubik(M). One would have to forget the physical part and
accept playing on a smartphone, which could be programmed reasonably easily.
For plane graph this could be represented by a Schlegel diagram and for toroidal
maps, we could use a plane representation with a group of symmetries.

Classifying the 3-valent graphs for which Rubik(M) may be constructed physi-
cally is also an interesting problem.
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