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Abstract

In this paper we explore a way of securing a secret inside a graph by observing
pieces of the secret as colors assigned to the graph vertices. If a graph allows a
highly (a, b)-resistant k-multicoloring then a secret can be divided into k parts
and sets of those parts distributed to the vertices of the graph so that no a at-
tackers can steal the secret, and when a attackers and b malfuntioning vertices
leave the graph, the secret is still whole in the remaining graph. In this paper
we explore how many vertices a graph must have in order to allow a highly
(3, 1)-resistant k-multicoloring, and what is the minimal number of colors, for
graphs that do allow such multicoloring.
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1 Introduction

In paper Multicoloring of graphs to secure a secret, [7], we were motivated by a
problem of securing a secret by dividing it into parts and distributing them to the
participants of some network. This is a known method of securing a secret [6]. In
our model, there are a attacker vertices in the network, trying to read the secret
or disable the group from reading it. Here we make an additional assumption,
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that besides the a attacker vertices, there are b vertices that are malfunctioning
and leaving the network. The secret is secure if a attackers didn’t steal the secret
and if the group is still able to read the whole secret after a attacker vertices,
their neighbors, and b malfunctioning vertices are removed from the network. We
represented the network with graph and parts of the secret with colors assigned to
the vertices. Coloring and multicoloring of graphs are often used to model some
real-life problem, like scheduling or frequency allocation and there are many new
colorings defined with different coloring conditions [2, 3, 4, 5, 9]. This prompted us
to define a highly (a, b)-resistant multicoloring with the conditions that make the
secret secure.

Our goal is to analyze minimal number of vertices a graph must have to allow a
highly (a, b)-resistant multicoloring, for given a and b, and if such a coloring exists
for a graph G, to determine what is the minimal number of colors. The results for
a = 1, b ∈ N and a = 2, b = 1, 2, 3 are presented in paper Highly (a, b)-resistant
multicoloring of graphs, [8], which is not yet published at this point. It can be
obtained from the authors by request, however, it is not necessary for understanding
this paper.

In this manuscript we analyze what graphs will allow a highly (a, b)-resistant
multicoloring for a = 3 and b = 1.

2 Preliminaries

We will mostly use standard definitions and notations of graph theory from [1], and
the rest we present in this section. For graph G and u ∈ V (G), with N(u) = NG(u)
we denote the set of neighbors of u in G, and M(u) = MG(u) = N(u) ∪ {u}.
Naturally, for A ⊆ V (G) we denote:

N(A) = NG(A) =
⋃
u∈A

NG(u);

M(A) = MG(A) =
⋃
u∈A

MG(u).

First, let us give the formal definition of highly (a, b)-resistant multicoloring.

Definition 1. Let G be a graph, and a, b, k ∈ N0. Vertex k-multicoloring κ of G is
called a highly (a, b)-resistant vertex k-multicoloring if for each A,B ⊆ V (G),
where |A| = a and |B| = b, the following holds:
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1. There exists a component H of the graph G\(MG(A) ∪B) such that⋃
u∈V (H)

κ(u) = {1, ..., k}.

2.
⋃
u∈A

κ(u) 6= {1, ..., k}.

We will say that graph G allows a highly (a, b)-resistant multicoloring if a
multicoloring function κ exists that is highly (a, b)-resistant. We will denote by
HRa,b(n) = k the fact that there exists a graph G with n vertices that allows
a highly (a, b)-resistant k-multicoloring, where k is the minimal number of colors
needed.

It can be easily proven that if a graph G with n vertices allows a highly (a, b)-
resistant k-multicoloring than the same graph allows a highly (a, b)-resistant (k+1)-
multicoloring, and there exists a graph G′ with n + 1 vertices that allows a highly
(a, b)-resistant k-multicoloring.

In our proofs, we will make use of the notion of an l-separable graph.

Definition 2. Let G be a graph and a, b, l ∈ N0. We will say that G is l-separable
with (a, b) vertices, if subsets A,B ⊆ V (G) exist, with |A| = a and |B| = b, such
that all the components in graph G\(MG(A) ∪B) have at most l vertices.

For a graph to allow a highly (3, 1)-resistant multicoloring, no 3 vertices can
have all the colors, so we will need the notion of a 3-separable graph.

3 Highly (3, 1)-resistant multicoloring

Our main theorem answers two questions:
1. What is the minimal number of vertices a graph must have in order to allow a
highly (3, 1)-resistant multicoloring?
2. What is the minimal number of colors needed for a highly (3, 1)-resistant multi-
coloring in all the graphs that allow such a coloring?

In order to shorten the proof of the theorem, we will first prove several lemmas.

Lemma 1. Let G be a graph.
i) If G has at most 8 vertices it is 3-separable with (1, 1) vertices.
ii) If G has at most 10 vertices it is 3-separable with (2, 0) vertices.
iii) If G has at most 12 vertices it is 3-separable with (2, 1) vertices.
iv) If G has at most 13 vertices it is 3-separable with (3, 0) vertices.

197



Vojković, Vukičević Highly resistant multicoloring

Proof. All the claims will be proven for connected graphs, and from that it easily
follows that they also hold for disconnected graphs.

i) Let G be a connected graph with at most 8 vertices. If G contains a vertex u
of degree at least 3 the claim is obvious, and if that is not the case then let u be any
vertex of degree 2 in G. G\M(u) has at most 5 vertices and it is a union of paths
so it is 3-separable with (0, 1) vertices.

ii) Let G be a connected graph with at most 10 vertices. If there exists a vertex
u of degree at least 3 in G then G\M(u) has at most 6 vertices. If there exists
a vertex of degree at least 2 in G\M(u), then G\M(u) is 3-separable with (1, 0)
vertices, and if all the vertices have the degree at most 1 then all the components
already have at most 3 vertices. On the other hand, if all the vertices in G have
the degree at most 2, and u is any vertex of degree 2 then G\M(u) has at most 7
vertices and it is a union of paths so it is easily seen that it is 3- separable with
(1, 0) vertices.

iii) Let G be a connected graph with at most 12 vertices. If there exists a vertex
u of degree at least 3 in G then G\M(u) has at most 8 vertices and the claim now
follows from i). On the other hand, if the highest degree in G is at most 2 then by
observing any vertex u of degree 2, G\M(u) remains with at most 9 vertices and it
is a union of paths so the claim again easily follows.

iv) This case is proven in paper [7].

Lemma 2. i) A graph G with 9 vertices, ∆(G) ≤ 3 and δ(G) = 1 is 3-separable
with (1, 1) vertices.

ii) A graph G with 13 vertices, ∆(G) ≤ 3 and δ(G) = 1 is 3-separable with (2, 1)
vertices.

Proof. i) Let G be a connected graph with 9 vertices, ∆(G) ≤ 3 and δ(G) = 1. Let
x be a vertex of degree 1 in G, and let us denote its only neighbor by y. If y has the
degree 2 then let us denote the other neighbor of y by w. G\{w} has 8 vertices and at
most 6 vertices in its largest component. If we denote any vertex u of degree at least
2 in that component then G\(M(u)∪{w}) is a graph with all components of size at
most 3. On the other hand, if y has the degree 3, let us denote its other 2 neighbors
by w1 and w2. At least one of them has another neighbor, not in {x, y, w1, w2}. Let
us assume that w1 has another neighbor and let us denote it by u. If u has the
degree 3 than G\M(u) has 5 vertices and either its largest component has at most
4 vertices (if u was adjacent to w2), so it is 3-separable with (0, 1) vertices, or its
largest component has at most 5 vertices and by removing w2 obtain a graph with
all components of size at most 3. If u has the degree 2, then either it is adjacent
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to w2 and then by removing the third neighbor of w2 and its neighbors, and w1, we
obtain a graph with components of size at most 3, or G\(M(u) ∪ {w2}) is such a
graph. If G is disconnected it can be easily seen that the claim also stands.

ii) Let G be a connected graph with 13 vertices, ∆(G) ≤ 3 and δ(G) = 1. Let x
be a vertex of degree 1, and y its only neighbor. If y has the degree 2 let us denote
by w its other neighbor. G\{w} has 1 component of 2 vertices, x and y, and the
remaining graph has 10 so it is 3-separable with (2, 0) vertices by Lemma 1 ii). If y
has the degree 3 let us denote its other 2 neighbors by w1 and w2. Now, if there exists
a vertex u in G\{y} of degree 3 in G then G\M(u) has 9 vertices, ∆(G\M(u)) ≤ 3
and δ(G\M(u)) ≤ 1, so the claim follows from i) (if δ(G\M(u)) = 1) or from Lemma
1 i) (if δ(G\M(u)) = 0). If this is not the case then the only vertex with degree 3
in G is y and G\M(y) has 9 vertices in a union of paths and it is easy to see that
the claim also follows. If G is disconnected the claim also holds.

Lemma 3. Let G be a graph with 9 vertices, ∆(G) = 3 and δ(G) ≥ 2. G is
3-separable with (1, 1) vertices.

Proof. It is easy to see that G cannot be 3-regular, so there is at least 1 vertex of
degree 2, let us denote it by x. Let us denote the two neighbors of x by u and v.
If u or v have a neighbor of degree 3, let us denote it by y. G\M(y) has 5 vertices
and x is of degree 0 or 1 so that graph is 3-separable by the (0, 1) vertices. On the
other hand, if neither u nor v have a neighbor of degree 3 then at least 1 of them
has a neighbor of degree 2, not in {u, x, v} and we distinguish three subcases:

1) One of them, say u, has a neighbor y of degree 2 and v is adjacent only to
vertices in {x,M(y)\{y}}.

Let us denote the other neighbor of y by z. Now G\M(y) has 6 vertices, one
component contains vertices x and v and the graph of 4 remaining vertices is 3-
separable with (0, 1) vertices.

2) One of them, say u, has a neighbor y of degree 2 and v is adjacent only to x
and y. This means that u must have another neighbor, say z, of degree 2. Graph
G\M(z) has 6 vertices, and one component contains only vertices x, v and y so the
claim easily follows.

3) Both of u and v have neighbors, say y and w of degree 2, and y has another
neighbor, z (not necessarily different from w).

If w has a neighbor in {u, y, z} then let us observe G\M(y).
3.1.) v has the degree 2 in G. Now G\M(y) has 6 vertices, x and v form one

component and the remaining graph of 4 vertices is 3-separable by (0, 1) vertices.
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3.2.) v has the degree 3 in G. Let us denote the neighbor of v different from x
and w by v1. Now G\ (M(y) ∪ {v1}) has all the components with at most 3 vertices.

On the other hand, if non v neighbor of w is not in {u, y, z} then G\(M(y)∪{v})
has 5 vertices in two components so the claim again stands.

If G is not connected it is easy to see that the claim also holds.

Lemma 4. Let k ≤ 5 and let it hold that no three vertices can have all the colors.
Then:

i) A graph G with at most 6 vertices doesn’t allow a highly (0, 1)-resistant k-
multicoloring.

ii) A graph G with at most 7 vertices doesn’t allow a highly (1, 0)-resistant k-
multicoloring.

iii) A graph G with at most 10 vertices doesn’t allow a highly (1, 1)-resistant
k-multicoloring.

iv) A graph G with at most 11 vertices doesn’t allow a highly (2, 0)-resistant
k-multicoloring.

Proof. We will prove all the claims for connected graphs and the claims for dis-
connected graphs follow from there. Without the loss of generality we can assume
k = 5.

i) Let G be a connected graph with at most 6 vertices. Each color must be
assigned at least 2 times so at least one vertex will have at least two colors. Moreover,
no vertex can have three or more colors because no three vertices can have all the
colors. Let us assume that one of the vertices has the set of colors {1, 2}. Now
neither of the remaining vertices can have neither of the sets {3, 4}, {3, 5}, {4, 5}.
But then it is impossible to assign the colors two times each.

ii) Let G be a connected graph with at most 7 vertices. If there is a vertex of
degree at least 3 in G the claim is easily seen, so let ∆(G) = 2. If G is a path the
claim can again be easily seen so let us assume G is a cycle. No vertex can have 3
or more colors and every color must be assigned at least twice so at least one vertex
must have two colors. Let us assume one of the vertices has the set of colors {1, 2}
and let us denote that vertex by u1. Further, let us denote the rest of the vertices
in the cycle by u2, ..., u7, starting from u1 in any direction. Now, no other vertex
can have neither of the sets {3, 4}, {3, 5}, {4, 5}, and since each of those colors must
appear at least twice we assign the colors 3, 4, 5 to the remaining 6 vertices, one to
each. It is obvious that the colors 3, 4, 5 will not appear anywhere else so there is
no point in assigning them in such a way that one color is given to two vertices that
are on a distance 2 or less, since then both instances of that single color could be
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easily removed. So without the loss of generality we may assume the multicoloring
function is the following:

u1 u2 u3 u4 u5 u6 u7
1, 2 3 4 5 3 4 5

Now we must assign the colors 1 and 2 once more each. It is easy to see that if
we assign the colors 1 and 2 to two vertices that have different colors, three vertices
could be found that have all the colors, so the only option is to assign 1 and 2 only
to u2 and u5, or u3 and u6, or u4 and u7, one to each. However in each of those
possibilities a vertex can be chosen to remove both instances of one of the colors.

iii) Let G be a connected graph with at most 10 vertices. Each color must be
assigned at least 3 times so at least one vertex will have 2 or more colors. If one
vertex would have 3 or more colors it would be easy to find three vertices that have
all the colors, so let us assume that one of the vertices has exactly 2 keys, the set
{1, 2}. Now none of the other vertices can have neither of the sets {3, 4}, {3, 5},
{4, 5} and since each of those colors must be assigned at least 3 times each, we
must assign them to the remaining 9 vertices so that each vertex has exactly one
color from the set {3, 4, 5}. The colors 1 and 2 must be assigned twice more each
so obviously two of the 9 vertices that have different colors from {3, 4, 5} will have
different colors from {1, 2}. But then again 3 vertices can be found that have all
the colors.

iv) Let G be a connected graph with at most 11 vertices. If there is a vertex
of degree 3 in G then let us denote it by u. G\M(u) has 7 vertices and the claim
follows from ii). Let us assume that the highest degree in G is 2. If G is a path the
claim is easy to see so let us assume G is a cycle. Let u be any vertex in G. G\M(u)
is a path of 8 vertices and by denoting one of the central vertices with v we can see
that G\(M(u) ∪M(v)) has all the components of size at most 3.

Lemma 5. Let k ≤ 5 and let it hold that no three vertices can have all the colors.
Then:

i) A graph G with 7 vertices that is either a path or it is disconnected doesn’t
allow a highly (0, 1)-resistant k-multicoloring.

ii) A graph G with 11 vertices that is either disconnected or it has a minimal
degree 1 doesn’t allow a highly (1, 1)-resistant k-multicoloring.

iii) A disconnected graph G with 15 vertices doesn’t allow a highly (2, 1)-resistant
k-multicoloring.

201
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Proof. i) If G is a disconnected graph with 7 vertices the claim follows from Lemma
4 i), and if G is a path it is 3-separable with (0, 1) vertices.

ii) Let G be a disconnected graph with 11 vertices. The claim follows from
Lemma 4 i), ii) and iii). Now let G be a connected graph with 11 vertices such that
δ(G) = 1. Let us denote with x a vertex of degree 1 and with y its only neighbor.
We distinguish two cases.

1) y has the degree 2. We follow the path starting in y until we reach a vertex of
degree 3. If such a vertex doesn’t exist G is a path and it is 3-separable with (1, 1)
vertices. On the other hand, if such a vertex exists, let us denote it by u. G\M(u)
has 7 vertices and it is either disconnected or it is a path so the claim follows from
i).

2) y has the degree 3. If any neighbor of y has the degree 3 let us denote it
by u. G\M(u) is disconnected (x is isolated) with 7 vertices so the claim follows
from i). Let us assume both neighbors of y have the degree at most 2. If they
have a common neighbor other then y, it must have the degree 3 so by removing it
along with its neighbors we again obtain a disconnected graph with 7 vertices and
the claim follows as before. If one of those neighbors has the degree 1 then let us
observe the other neighbor of y, of degree 2. By following the path starting in that
neighbor, not containing y, let us denote by w the first vertex of degree 3 we find.
If G\M(w) is disconnected the claim follows from i), and if it is connected then
G\M(w) is a path of 5 vertices with two leaves attached to one end of it (vertex y).
If we denote by z the neighbor of y that has the degree 2, then G is 3-separable by
w and z.

Let us assume both neighbors of y have the degree 2 and each has its own
neighbor. Let us denote those neighbors by u and v. We consider three subcases.

2.1.) u and v are adjacent. In that case at least one of them must have the degree
3, without the loss of generality let us assume d(u) = 3. G\M(u) is disconnected
with 7 vertices so the claim follows from i).

2.2.) u and v are not adjacent and at least one of them has the degree 3. We
may assume d(u) = 3. Now G\(M(u) ∪ {v}) has all the components with at most
3 vertices.

2.3.) u and v both have the degree 2. If they have a common neighbor it must
have the degree 3, so the claim follows as before. Let us assume each of them has
its own neighbor, let us denote them by u1 and v1, respectively. If u1 and v1 are
adjacent the claim follows as in 2.1. and if they are not adjacent and at least one
of them has the degree 3 then it is easy to see that G is 3-separable, similarly as
in 2.2. Let us assume u1 and v1 both have the degree 2, and let us denote their
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neighbors by u2 and v2, respectively. If u2 and v2 are adjacent, at least one of them
must have the degree 3, without the loss of generality we may assume d(u2) = 3.
Now G\(M(u2)∪ {y}) has all the components with at most 3 vertices. If any of u2,
v2 has the degree 1 then G\M(y) has 7 vertices and is disconnected so the claim
follows from i). And if they are not adjacent and both have the degree 2, they are
both adjacent to the 1 remaining vertex in the graph. But now G\M(y) is a path
of 7 vertices and the claim again follows from i).

iii) Let G be a graph with 15 vertices and at least 2 components.
If the smallest component in G has 1 vertex it obviously cannot have all the

colors so let us observe the remaining 14 vertices. If there exist a vertex of degree
3 among those 14 vertices let us denote it by u. G\M(u) a graph with 10 vertices
which is doesn’t allow a highly (1, 1)-resistant k-multicoloring by Lemma 4 iii). The
same reasoning follows if the smallest component in G has 2 or 3 vertices.

If the smallest component in G has 4 vertices then that component is 3-separable
with (0, 1) vertices and the graph remaining 11 vertices doesn’t allow a highly (2, 0)-
resistant k-multicoloring by Lemma 4 iv).

If the smallest component in G has 5, 6 or 7 vertices then by Lemma 4 ii) it
doesn’t allow a highly (1, 0)-resistant k-multicoloring and the graph of remaining
10, 9 or 8 vertices doesn’t allow a highly (1, 1)-resistant k-multicoloring by Lemma
4 iii).

Lemma 6. Let G be a connected graph with 19 vertices, ∆(G) = 3, and ∆(G\M(u)) =
3, for any vertex u with degree 3 in G. Then one of the following holds:

a) There exists a vertex u in G such that G\M(u) is disconnected with 15 ver-
tices.

b) There are vertices u and v in G such that G\(M(u) ∪M(v)) has 11 vertices
and it is either disconnected or it has the minimal degree 1.

Proof. We will prove the claim through two cases, depending on the minimal degree
in G. Obviously G cannot be 3-regular so its minimal degree is either 1 or 2.

1) δ(G) = 1. Let us denote by x the vertex of degree 1 and by y its only neighbor.
If y has the degree 2 we follow the path starting in y, not containing x, and denote
by u the first vertex of degree 3 in that path. G\M(u) has 15 vertices and it is
disconnected, so a) holds. Let us assume y has the degree 3 and let us denote the
other two neighbors of y by u and v. If any of them has the degree 3 then by
removing it and its neighbors, we obtain a disconnected graph (x is isolated) with
15 vertices and again a) holds. If any of u and v has the degree 1 the claim is
easy to see, similarly as when y has the degree 2. So let us assume u and v both
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have the degree 2. If u and v have a common neighbor it must have the degree 3
so by removing and its neighbors, we again obtain a disconnected graph with 15
vertices. Let us assume u and v have each its own new neighbor and let us denote
them by u1 and v1, respectively. If any of them has the degree 3, without the loss
of generality we may assume that d(u1) = 3, then y has the degree 2 in G\M(u1) so
when we remove another vertex of degree 3 from G\M(u1) along with its neighbors,
the remaining graph will have 11 vertices and x will have the degree 1 in it, so b)
holds. If any of u1 and v1 has the degree 1, let us assume d(u1) = 1, then whatever
two vertices of degree 3 we remove along with their neighbors, u1 will have the
degree 0 or 1 in the remaining graph of 11 vertices so b) holds. On the other hand,
if u1 and v1 both have the degree 2 we observe the rest of the graph. There must be
at least one vertex besides y with degree 3. Let us remove it and its neighbors. Now
by removing y and its neighbors at least one of u1 and v1 remains either isolated or
with the degree 1 in the remaining graph of 11 vertices, so again b) holds.

2) δ(G) = 2. Let us distinguish two subcases.
2.1.) Two vertices of degree 2 are adjacent in G.
Let us denote those vertices by x and y. If x and y have a common neighbor of

degree 3 let us denote it by u and let us observe the path starting in u not containing
x nor y. Let us denote by w the first vertex of degree 3 on that path. If G\M(w) is
disconnected then a) holds and if it is connected then u is the only vertex of degree
3 in the remaining graph and by removing it and its neighbors, we obtain a path
of 11 vertices so b) holds. Let us assume x and y have one more neighbor each. If
they are adjacent at least one of them must have the degree 3 and by removing it
and its neighbors, either x or y will remain isolated so a) holds. Let us assume the
neighbors are not adjacent and let us denote them by x1 and y1. If at least one of
those neighbors has the degree 2, without the loss of generality we may assume that
it is x1, then let us follow the path starting in x, not passing through y, and let us
denote by u the first vertex of degree 3 in that path (not necessarily different from
y1) (such a vertex must exist because δ(G) > 1), and let us denote the predecessor
of the predecessor of u by v (note that v can be x if we found u on a distance 2 from
x). Now vertex v has the degree 1 in G\M(u) and since its only neighbor is surely
of degree 2 then by removing the other vertex of degree 3 and its neighbors (one
more vertex of degree 3 must exist) from G\M(u), v will remain with the degree at
most 1 and b) holds.

So let us assume that both neighbors, of x and y, have the degree 3. Let us again
denote the neighbors by x1 and y1, respectively. If they have a common neighbor
then let us remove x1 and its neighbors. Now y has the degree 1 and y1 has the
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degree 2 in G\M(x1) so after removing the other vertex of degree 3 and its neighbors
(one more vertex of degree 3 must exist), y will have the degree at most 1 and b)
holds.

Let us assume x1 and y1 have no common neighbors but instead have 2 more
neighbors each. If any of them has the degree 3, without the loss of generality we
may assume that it is the neighbor of x1, then by removing it and its neighbors, x
remains with the degree 1 and it will have the degree at most 1 after removing the
other vertex of degree 3 along with its neighbors, by the same reasoning as before.
Let us assume that all the neighbors of x1 and y1 have the degree 2.

If two of them are adjacent, both of them from x1 (or y1), then it is easy to
see that 1 vertex of degree 3 can be found to leave the graph disconnected with 15
vertices. And if one neighbor of x1 is adjacent to a neighbor of y1 then we observe
the other neighbors of x1 and y1 and let us denote them by x2 and y2, respectively.
They obviously cannot be adjacent and if they have a common neighbor it must be
of degree 3, so by removing it and its neighbors, we obtain a disconnected graph
with 15 vertices. Let us assume x2 and y2 have each its own neighbor and let us
denote them by x3 and y3, respectively. If any of x3 and y3 has the degree 3, without
the loss of generality let us assume it is x3, then G\(M(x3)∪M(y1)) is disconnected
with 11 vertices so b) holds. Let us assume x3 and y3 have the degree 2. Now if we
remove x1 and its neighbors, y and x3 have the degree 1 in G\M(x1). If we remove
y1 and its neighbors, then x3 will have the degree 1 in the remaining graph of 11
vertices and otherwise y will remain with degree 1 so in each case a) holds.

On the other hand, if none of the neighbors of x1 and y1 are adjacent let us
denote them by x11, x12, y11, y12. If x11 and x12 (or y11 and y12) have a common
neighbor of degree 2 or 3 it is easy to obtain a disconnected graph. Let us assume
that some other two have a common neighbor and without the loss of generality let
us assume those are x12 and y11. (Figure 1 a) If that neighbor has the degree 2 then
G\(M(x1)∪M(y1)) is disconnected with 11 vertices and if it has the degree 3 then
that vertex will have the degree at most 1 in G\(M(x1) ∪M(y1)) so b) holds. Let
us assume none of x11, x12, y11, y12 have a common neighbor and let us denote their
neighbors by x21, x22, y21, y22 (Figure 1 b)).

If any of x21, x22, y21, y22 has the degree 3, without the loss of generality let
us assume x21 then G\(M(x21) ∪ M(y1)) has 11 vertices and minimal degree 1
(d(x) = 1), so let us assume they all have the degree 2. But now y, x21 and x22
have the degree 1 in G\M(x1) and when we remove any vertex of degree 3 and
its neighbors, at least one of them will have the degree at most 1 in the remaining
graph of 11 vertices.
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Figure 1: Subcases of 2.1.

2.2.) There are no adjacent vertices of degree 2.
Let x be a vertex of degree 2 and u and v its neighbors of degree 3. Let us

consider two subcases.
2.2.1.) u and v are adjacent.
If they have a common neighbor it must have the degree 3 and by removing it

and its neighbors, we obtain a disconnected graph with 15 vertices.
If u and v have one more neighbor each and at least one of them has the degree 3,

without the loss of generality let us assume it is the neighbor of u, then by removing
it and its neighbors, x remains with degree 1 and v with degree 2, so by removing
the other vertex of degree 3 and its neighbors from the graph the degree of x will
be at most 1 and b) will hold. Let us assume both neighbors have the degree 2
and let us denote them by u1 and v1. If u1 and v1 have a common neighbor the
claim is again easy to see so let us assume they have one more neighbor each and
let us denote them by u2 and v2. They must have the degree 3 because there are
no adjacent vertices of degree 2 in the graph.

If u2 and v2 are adjacent then by removing any of them and its neighbors, we
obtain a disconnected graph on 15 vertices and if they have a common neighbor of
degree 3 then by removing it and its neighbors, we obtain a disconnected graph on 15
vertices. If u2 and v2 have a common neighbor of degree 2 then G\(M(u2)∪M(v))
has 11 vertices and v2 has the degree at most 1 so b) holds. And if they have no
common neighbors then G\(M(u2) ∪M(v2)) is disconnected with 11 vertices.

2.2.2.) u and v are not adjacent.
If they have a common neighbor of degree 3 the claim is easy to see. Let us

first assume they have a common neighbor of degree 2 and let us denote their other
neighbors by u1 and v1 (they cannot have 2 common neighbors of degree 2). If at
least one of them has the degree 3, without the loss of generality let us assume that
it is u1, then in G\M(u1) x has the degree 1. If v is not the only vertex of degree 3 in
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Vojković, Vukičević Highly resistant multicoloring

G\M(u1) then by removing that other vertex we obtain a graph with 11 vertices in
which x has the degree 1. And if v is the only vertex with the degree 3 in G\M(u1)
then that means v1 has the degree at most 2 in G\M(u1) and by removing v and its
neighbors, the other (non v) neighbor of v1 remains with the degree 1 in a graph of
11 vertices or we have obtained a disconnected graph. So let us assume that u1 and
v1 have the degree 2. They are obviously not adjacent and if they have a common
neighbor of degree 3 the claim is easily seen, so let us assume they each have a new
neighbor of degree 3, let us denote them by u2 and v2. Now G\(M(u2) ∪M(v)) is
disconnected (u is isolated) with 11 vertices.

If u and v have no common neighbors let us denote their neighbors by u1, u2,
v1, v2. If any of them has the degree 3, without the loss of generality let us assume
it is u1, then x has the degree 1 in G\M(u1). If there exists a vertex of degree 3 in
G\M(u1) different from v then by removing it as the other agent x has the degree
at most 1 in the remaining graph of 11 vertices. And if v is the only vertex with
degree 3 in G\M(u1) then v1 and v2 have the degree at most 2 in G\M(u1) and
by removing v and its neighbors we either obtain a disconnected graph or at least
one neighbor of v1 and v2 has the degree at most 1 in G\(M(u1)∪M(v)). The only
remaining case to consider is when u1, u2, v1, v2 all have the degree 2. Neither two
of them may be adjacent and they cannot have common neighbors of degree 2. If
any two of them have a common neighbor of degree 3 the claim is easy to see and
if they have no common neighbors then let us remove the neighbor of u1 and its
neighbors, and M(v). The remaining graph has 11 vertices and u has the degree 1
so the claim is proven.

Theorem 7. 1. A graph G with at most 17 vertices doesn’t allow a highly (3, 1)-
resistant multicoloring.

2. 6 ≤ HR3,1(19) ≤ HR3,1(18) ≤ 7.

3. HR3,1(20) = 4.

Proof. First we observe that that if G allows a highly (3, 1)-resistant k-multicoloring,
then k ≥ 4. Let us first prove that a graph G with at most 17 vertices doesn’t allow
a highly (3, 1)-resistant multicoloring. Let us assume the opposite, that there exists
a graph G with 17 vertices and k ∈ N, such that G allows a highly (3, 1)-resistant
k-multicoloring. Components of at most 3 vertices cannot have all the colors so
we disregard them. We will prove the claim through four cases, depending on the
number of components with at least 4 vertices in G.

1) G has 4 components with at least 4 vertices.
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The largest component in G has at most 5 vertices and it is 3-separable with
(1, 0) vertices. The second and third largest component are also 3-separable with
(1, 0) vertices, and the fourth largest component is 3-separable with (0, 1) vertices.
This means that G is 3-separable by (3, 1) vertices and therefore doesn’t allow the
aforementioned coloring.

2) G has 3 components with at least 4 vertices.
If the largest component in G has 9 or 8 vertices then it is 3-separable with

(2, 0) vertices by Lemma 1 ii), the second largest component is 3-separable with
(1, 0) vertices and the remaining component with (0, 1) vertices.

If the largest component in G has 7 vertices it is 3-separable with (1, 1) vertices
by Lemma 1 i) and the two remaining components are 3-separable by (1, 0) vertices
each.

3) G has 2 components with at least 4 vertices.
If the largest component in G has 13 vertices it is 3-separable with (3, 0) vertices

by Lemma 1 iv), and the remaining component of at most 4 vertices is 3-separable
with (0, 1) vertices.

If the largest component in G has 11 or 12 vertices it is 3-separable with (2, 1)
vertices by Lemma 1 iii) and it is easily seen that the remaining component is
3-separable with (1, 0) vertices.

If the largest component has 9 or 10 vertices it is 3-separable with (2, 0) vertices
by Lemma 1 ii) and the remaining component is 3-separable with (1, 1) vertices by
Lemma 1 i).

4) G has exactly 1 component with at least 4 vertices.
Let G be a connected graph with 17 vertices. We can assume this because all

other cases are implied by this solution. We consider 3 subcases, depending on the
highest degree in G.

4.1.) The highest degree in G is 4.
Let u be a vertex of degree 4 in G. G\M(u) has 12 vertices and it is 3-separable

with (2, 1) vertices by Lemma 1 iii).
4.2.) The highest degree in G is 2.
G is obviously a cycle or a path and by choosing a vertex u of degree 2, G\M(u)

is a union of paths and has 14 vertices. It can now be easily seen that the claim
holds.

4.3.) The highest degree in G is 3.
Let us denote any vertex of degree 3 by u. G\M(u) has 13 vertices. If the

highest degree in G\M(u) is at most 2 the claim easily follows so let us assume the
highest degree in G\M(u) is 3. We distinguish 2 possibilities.
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a) There is a vertex of degree 1 in G\M(u). The claim now follows from Lemma
2 ii).

b) The minimal degree in G\M(u) is 2. Let v be a vertex in G\M(u) with degree
3. G\(M(u) ∪M(v)) has 9 vertices. If the highest degree in G\(M(u) ∪M(v)) is
at most 2 the claim can easily be seen, so let us assume the highest degree in
G\(M(u)∪M(v)) is 3. Also, if there exists a vertex of degree 1 in G\(M(u)∪M(v)),
the claim follows from Lemma 2 i). The only case left to consider is if all the vertices
in G\(M(u) ∪M(v)) are of degree 2 or 3. But in this case the claim follows from
Lemma 3. We have proven that a graph G with at most 17 vertices doesn’t allow a
highly (3, 1)-resistant multicoloring.

A graph with 18 vertices that that allows a highly (3, 1)-resistant 7-multicoloring
is given in Figure 2.

Figure 2: A graph with 18 vertices and a highly (3, 1)-resistant 7-
multicoloring

From this it follows that HR3,1(19) ≤ 7.
Let us prove that HR3,1(19) ≥ 6. Let us assume the opposite, that there exists

a graph G with 19 vertices that allows a highly (3, 1)-resistant 5-multicoloring.
Since no three vertices can have all the colors it is enough to observe only com-

ponents with 4 or more vertices. We distinguish four possibilities:
1) G has four components with at least 4 vertices.
The largest component has at most 7 vertices so by Lemma 4 ii) it doesn’t allow

a highly (1, 0)-resistant 5-multicoloring. The second and third largest component
also don’t allow a highly (1, 0)-resistant 5-multicoloring and the smallest of the
4 observed components can have 4 vertices at most so it is 3-separable by (0, 1)
vertices.

2) G has three components with at least 4 vertices.
Possible component sizes are different, depending on how many vertices in G

are in components with less then 4 vertices. However, the largest component can
have 11 vertices at most so by Lemma 4 iv) it doesn’t allow a highly (2, 0)-resistant
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5-multicoloring. Second largest component can have 7 vertices at most so by Lemma
4 ii) it doesn’t allow a highly (1, 0)-resistant 5-multicoloring and the third largest
component has at most 6 vertices so by Lemma 4 i) it doesn’t allow a highly (0, 1)-
resistant 5-multicoloring. This holds for all possible sizes of the components.

3) G has two components with at least 4 vertices.
The largest component has 15 vertices at most and the fact that a graph of

15 vertices doesn’t allow a highly (3, 0)-resistant 5-multicoloring follows from the
results in [7]. The second largest component has 4 vertices and it is 3-separable by
(0, 1) vertices. The case when the largest component has 14 or 13 vertices and the
second largest 5 or 6 follows in the same way.

If the largest component has 12 vertices then it is 3-separable by (2, 1) vertices
which follows from Lemma 1 iii). The second largest component has at most 7
vertices and it doesn’t allow a highly (1, 0)-resistant 5-multicoloring, by Lemma 4
ii).

If the largest component has 11 or 10 vertices then it doesn’t allow a highly
(2, 0)-resistant 5-multicoloring and the second largest component then has at most
8 or 9 vertices and it doesn’t allow a highly (1, 1)-resistant 5-multicoloring, which
follows from Lemma 4 iv) and iii).

4) G has exactly one component with at least 4 vertices.
Without the loss of generality we may assume that G is connected with 19

vertices because all other cases are implied by this solution.
4.1.) The highest degree in G is 2. Let u be any vertex with degree 2. G\M(u)

has 16 vertices and it is a union of paths. Let us denote by v the center of the
largest path in G\M(u). Now G\(M(u) ∪M(v)) has 13 vertices and it is a union
of at least 2 paths of which the largest one has at most 7 vertices and it is doesn’t
allow a highly (1, 0)-resistant 5-multicoloring by Lemma 4 ii) The remaining grapf
of 6 vertices doesn’t allow a highly (0, 1)-resistant 5-multicoloring by Lemma 4 i).

4.2.) The highest degree in G is 3. Let u be any vertex with degree 3. G\M(u)
has 15 vertices.

If all of them have the degree at most 2 then let v be any vertex of degree 2.
G\(M(u)∪M(v)) has 12 vertices and it is a union of paths. If G\(M(u)∪M(v)) is
not connected it is easy to see that it is 3-separable with (1, 1) vertices and if it is
one path of 12 vertices then let w be a vertex on a distance 4 from the end of that
path. G\(M(u) ∪M(v) ∪M(w)) is a union of two paths, of lengths three and six,
and the larger one is 3-separable with (0, 1) vertices.

On the other hand, if there exists a vertex of degree 3 in G\M(u) than the claim
follows from Lemma 6 and Lemma 5 ii) and iii).

210
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4.3.) The highest degree in G is at least 4. Let u be a vertex in G with the highest
degree. G\M(u) has at most 14 vertices and it doesn’t allow a highly (2, 1)-resistant
5-multicoloring by Lemma 5 iii). This proves our claim that HR3,1(19) ≥ 6.

It remains to prove that HR3,1(20) = 4. It is easily seen that HR3,1(20) ≥ 4
must hold, and the graph G with 20 vertices that allows a highly (3, 1)-resistant
4-multicoloring is given in Figure 3.

Figure 3: A graph with 20 vertices and a highly (3, 1)-resistant 4-
multicoloring
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