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Abstract

This paper addresses divisibility properties of some families of sequences arising
from partial sums of a strong divisibility sequence. In particular, we demon-
strate periodicity of greatest common divisor within 1-fibonacci numbers. We
also present congruences within this sequence modulo a prime number p where
p ≡ ±1 (mod 5) and p ≡ ±2 (mod 5).
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1 Introduction

A divisibility sequence is an integer sequence (dn)n≥0 with the property that an
index n being a multiple of index m imply the term dn is a multiple of dm,

m | n =⇒ dm | dn (1)

for all natural numbers m,n. If for the sequence (dn)n≥0 we have

gcd(dm, dn) = dgcd(m,n), (2)
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then such sequence is called strong divisibility sequence. It is immediately seen that
a strong divisibility sequence is also divisibility sequence.

An important class of these sequences are elliptic divisibility sequences (EDS).
An elliptic divisibility sequence is a sequence of integers (Wn)n≥0 satisfying the
recursive relation

Wn+mWn−mW
2
1 = Wn+1Wn−1W

2
m −Wm+1Wm−1W

2
n (3)

and such that Wn divides Wm whenever n divides m. It is known that if the initial
conditions for (3) satisfies

i) W1 = 1,

ii) W2,W3,W4/W2 ∈ Z \ 0

then Wn is an integer for every n. As a further basic property of EDS we have
that if the sequence (Wn)n≥0 is a solution of (3) then we have

W2n+1 = Wn+2W
3
n −Wn−1W

3
n+1, n ≥ 1

W2nW2 = Wn(Wn+2W
2
n−1 −Wn−2W

2
n+1, n ≥ 2.

An example of such sequences of numbers is the sequence

1, 1, 1,−1,−2,−3,−1, 7, 11, 20,−19,−87,−191,−197, 1018, . . .

(the sequence A050512 in the OEIS). As another example let as mention the sequence
(Gn)n≥0 consisting of every second Fibonacci numbers is a EDS, Gn = F2m. We let
(hn)h≥0 denote the sequence defined by hn = (n/3) where n ∈ N and (a/p) denote
the Legendre symbol, for the prime number p.

Among notable representatives of divisibility sequences we have Mersenne num-
bers defined by the explicit formula

Mn = 2n − 1, n ≥ 0,

as well as the Fibonacci numbers,

Fn =
1√
5

[(
1 +
√

5

2

)n

−
(

1−
√

5

2

)n]
.

Both of these sequences appears in various number theoretical and combinatorial
context. In addition to certain families of Dyck paths, the n-th Mersenne number
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appears as the number of nonempty subsets of a set with n elements, as a q-binomial
coefficient, a rank of matroids, etc. (the sequence A000225 in the OEIS). Recall that
Fibonacci numbers appears as the solutions of the Diophantine equation

x2 − 5y2 = 4(−1)n, (4)

i.e. we have the Fibonacci sequence (Fn)n≥0 and the Lucas sequence (Ln)n≥0 as
the solutions (x, y) = (Ln, Fn) of (4), where the Lucas numbers are defined by the
same recurrence relation as the Fibonacci numbers but with the initial conditions
L0 = 2, L1 = 1. One can also use the Diophantine equation (4) as a definition of
these two sequences of numbers.

This work aim at finding divisibility properties of some families of generalized
divisibility sequences. We were curious to establish how the properties (1) and (2)
are inherited within such sequences.

2 Previous results and motivation

A complete characterization of divisibility sequences arising from linear recurrences
is done by Bézivin, Pethő, and van der Poorten [2]. Recent development is done by
Ingram [11], Silverman [18] and Gezer and Bizim [6]. There are further generaliza-
tions and extensions of this notion. A natural generalization of divisibility sequences
is through divisibility of ideals in a ring. One can find more on this in a work of
Silverman [17]. Results on matrix divisibility sequences (a sequence of matrices with
properties analogue to (1)) are found by Cornelissen and Reynolds [4] as well as
Górnisiewicz [10]. Among other classes of divisibility sequences, let mention a class
of sequences defined as

dn(α) = max{d ∈ Z : αn ≡ 1 (mod d)},

where α is an algebraic integer. Moreover, such sequences also satisfy property (2)
i.e. they are strong divisibility sequences, which is proved by Silverman [16].

Among many remarkable properties of the Fibonacci sequence (Fn)n≥0, Fn+2 =
Fn+1 + Fn, F0 = 0, F1 = 1 we have that when m divide n, then Fm divide Fn,

m | n =⇒ Fm | Fn. (5)

There is also identity
Fm+n = Fm+1Fn + FmFn−1
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and as a consequence of these two facts one can derive that the greatest common
divisor of the Fibonacci numbers Fm and Fn is again Fibonacci number, that one
whose index is gcd(m,n),

gcd(Fm, Fn) = Fgcd(m,n). (6)

Details on proof of this one can find in [1]. Among further divisibility properties of
Fibonacci numbers is a well known fact that

Fp ≡
(p

5

)
(mod p) (7)

Fp±1 ≡
1±

(
p
5

)
2

(mod p) (8)

where p is an odd prime.
In what follows we present divisibility properties of the sequences arising from

partial sums of a family of strong divisibility sequence. In particular, the hyper-

fibonacci sequence of the rth generation (F
(r)
n )n≥0, is defined by the recurrence

relation

F (r)
n =

n∑
k=0

F
(r−1)
k , F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1, (9)

where r ∈ N and Fn is the nth term of the Fibonacci sequence (Fn)n≥0. These
sequences are introduced by Dil and Mező, in a study of a symmetric algorithm for
hyperharmonic, Fibonacci and some other integer sequences [8]. Several number
theoretical, combinatorial and algebraical properties of hyperfibonacci sequences

is already known [3, 13, 14, 20]. An alternative definition of (F
(r)
n )n≥0 is by the

recurrence relation

F
(r)
n+2 = F

(r)
n+1 + F (r)

n +

(
n+ r

r − 1

)
, n ≥ 0 (10)

where initial values are F
(r)
0 = 0, F

(r)
1 = 1. The proof of this one can find in [5].

For r = 1 this relation gives the sequence of numbers

0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, . . . ,

for r = 2 we have the sequence

0, 1, 3, 7, 14, 26, 46, 79, 133, 221, 364, 596, 972, . . .
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etc. When r = 1, relation (10) reduces to

F
(1)
n+2 = F

(1)
n+1 + F (1)

n + 1. (11)

We shall present divisibility properties of hypefibonacci numbers of the first gen-

eration (F
(1)
n )n≥0. Throughout the paper, the hyperfibonacci sequence of the 1st

generation we shall also call hyperfibonacci sequence, in short.

3 The main result

Every two consecutive Fibonacci numbers are relatively prime. In Lemma 1 we
generalize this property on the case of hyperfibonacci numbers.

Lemma 1. Every three consecutive hyperfibonacci numbers F
(1)
n , F

(1)
n+1, F

(1)
n+2, n ≥ 0

are relatively prime,

gcd
(
F (1)
n , F

(1)
n+1, F

(1)
n+2

)
= 1. (12)

Proof. Using basic properties of the gcd function and the recurrence relation (11)
we obtain

gcd
(
F (1)
n , F

(1)
n+1, F

(1)
n+2

)
= gcd

(
F (1)
n , gcd

(
F

(1)
n+1, F

(1)
n+1 + F (1)

n + 1
))

= gcd
(

gcd
(
F (1)
n , F (1)

n + 1
)
, F

(1)
n+1

)
= gcd

(
1, F (1)

n , F
(1)
n+1

)
= 1.

In a similar fashion one can prove that every four consecutive hyperfibonacci
numbers of the 2-nd generation are relatively prime. Furthermore, for r ≥ 3 one
can use the obvious equality for binomial coefficients(

n+ q

p

)
−
(
n+ q − 1

p

)
=

(
n+ q − 1

p− 1

)
(13)
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when applying Euclid algorithm. In particular, for r = 3 we have

gcd
(
F (3)
n , F

(3)
n+1, . . . , F

(3)
n+4

)
= gcd

(
F (3)
n , . . . , F

(3)
n+3, F

(3)
n+3 + F

(3)
n+2 +

(
n+ 5

2

))
= gcd

(
F (3)
n , . . . , F

(3)
n+3,

(
n+ 5

2

))
= gcd

(
F (3)
n , . . . , F

(3)
n+2 + F

(3)
n+1 +

(
n+ 4

2

)
,

(
n+ 5

2

))
= gcd

(
F (3)
n , F

(3)
n+1, F

(3)
n+2,

(
n+ 4

2

)
,

(
n+ 5

2

))
= gcd

(
F (3)
n , F

(3)
n+1,

(
n+ 3

2

)
,

(
n+ 4

2

)
,

(
n+ 5

2

))
= gcd

(
F (3)
n , F

(3)
n+1,

(
n+ 3

2

)
, n+ 4, 1

)
= 1.

We formalize these arguments in the proof of the following Theorem 1.

Theorem 1. For n ≥ 0, every (r + 2)-tuple of consecutive hyperfibonacci numbers
of r-th generation are relatively prime,

gcd
(
F (r)
n , F

(r)
n+1, . . . , F

(r)
n+r+1

)
= 1. (14)

Proof. When applying basic properties of the gcd function we use relations (11) and
(13) to get

gcd(F (r)
n , F

(r)
n+1, . . . , F

(r)
n+r+1)

= gcd

(
F (r)
n , F

(r)
n+1,

(
n+ r

r − 1

)
,

(
n+ r + 1

r − 1

)
, . . . ,

(
n+ 2r − 1

r − 1

))
= gcd

(
F (r)
n , F

(r)
n+1,

(
n+ r

r − 1

)
,

(
n+ r

r − 2

)
, . . . ,

(
n+ 2r − 2

r − 2

))
= gcd

(
F (r)
n , F

(r)
n+1,

(
n+ r

r − 1

)
,

(
n+ r

r − 2

)
, . . . , n+ r, n+ r + 1

)
= gcd

(
F (r)
n , F

(r)
n+1,

(
n+ r

r − 1

)
,

(
n+ r

r − 2

)
, . . . , n+ r, 1

)
= 1.
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Martinjak, Tipurić - Spužević GCDs in Generalized Divisibility Sequences

In addition, we have that the greatest common divisor of some pairs of hyperfi-
bonacci numbers is a Fibonacci number, as stated in Theorem 2.

Theorem 2. For m,n ∈ N the greatest common divisor of the (4m − 3)-th and
(4m− 1)-st hyperfibonacci numbers is equal to F2m,

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= F2m. (15)

Proof. Using the fact that the gcd of two numbers does not change if the largest
number is replaced by its difference with the smaller one and applying the recurrence
relation (11) we obtain

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= gcd

(
F

(1)
4m−3, F

(1)
4m−2 + 1

)
= gcd

(
F

(1)
4m−5 − 1, F

(1)
4m−4 + 2

)
.

When we continue to diminish the larger number this way, resulting number is
always represented as a sum of a hyperfibonacci number and an integer, F4m−q +aq
and Fm−q+1 + aq−1. According to the initial terms a3 = 0 and a2 = 1, the absolute
value of the n-th number in sequence of these integers differentiate from the n-th
Fibonacci number for 1. More precisely, we have

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= gcd

(
F

(1)
4m−q + (−1)q(Fq−2 + 1), F

(1)
4m−q+1 + (−1)q+1(Fq−3 + 1)

)
where 3 ≤ q ≤ 4m. Now, according to this fact we obtain

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= gcd

(
F

(1)
4m−3 − (F1 − 1), F

(1)
4m−2 + (F0 + 1)

)
= gcd

(
F

(1)
4m−4 + (F2 + 1), F

(1)
4m−3 − (F1 − 1)

)
= gcd

(
F

(1)
2m−2 + (F2m + 1), F

(1)
2m−1 − (F2m−1 − 1)

)
= gcd

(
2F2m, F2m+1 − F2m−1

)
= gcd

(
2F2m, F2m

)
= F2m,

which completes the proof.

For an alternative proof of Theorem 2 we have the following. By the product
expansion formula we have

Fm+n = FmLn + (−1)n+1Fm−n
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and from it we get

F4m = F2mL2m and F4m−1 = F2mL2m−1 + (−1)2m F1 = F2mL2m−1 + 1

We now have:

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= gcd (F4m−1 − 1, F4m+1 − 1) = gcd (F4m−1 − 1, F4m) =

= gcd (F2mL2m−1, F2mL2m) = F2m gcd (L2m−1, L2m) = F2m

As an example, let consider the case when m = 3. According to Theorem 2 the

greatest common divisor of numbers F
(1)
9 (= 88) and F

(1)
11 (= 232) is equal to

gcd
(
F

(1)
9 − (F1 − 1), F

(1)
10 + (F0 + 1)

)
= gcd

(
F

(1)
8 + (F2 + 1), F

(1)
9 − (F1 − 1)

)
= gcd

(
F

(1)
7 − (F3 − 1), F

(1)
8 + (F2 + 1)

)
= gcd

(
F

(1)
4 + (F6 + 1), F

(1)
5 − (F5 − 1)

)
= gcd

(
2F6, F6

)
= F6.

Indeed, gcd(88, 232) = 8 which is the 6-th number in the Fibonacci sequence.
When applying (6) we have an obvious consequence of Theorem 2, stated in

Corollary 1.

Corollary 1. The greatest common divisor of the 4-tuple of hyperfibonacci numbers

F
(1)
4m−1, F

(1)
4m−3, F

(1)
4n−1, F

(1)
4n−3, m,n ∈ N is equal to the gcd(2m, 2n)-th Fibonacci

number,

gcd
(
F

(1)
4m−1, F

(1)
4m−3, F

(1)
4n−1, F

(1)
4n−3

)
= Fgcd(2m,2n).

In Corollary 2 we list further periodicity in relatively prime pairs and the greatest
common divisor, for hyperfibonacci numbers.

Corollary 2. For the hyperfibonacci sequence
(
F

(1)
n

)
n≥0

we have

i) gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= 1,
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ii) gcd
(
F

(1)
6n+2, F

(1)
6n+3

)
= 2,

iii) gcd
(
F

(1)
6n+6, F

(1)
6n+7

)
= 1.

Proof. i) We employ recurrence relation (11) to get

gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= gcd

(
F

(1)
6n+3 + 1, F

(1)
6n+4

)
= gcd

(
F

(1)
6n+2, F

(1)
6n+3 + 1

)
= gcd

(
F

(1)
6n+1 + 2, F

(1)
6n+2

)
= gcd

(
F

(1)
6n − 1, F

(1)
6n+1 + 2

)
= gcd

(
F

(1)
6n−1 + (F4 + 1), F

(1)
6n − (F3 − 1)

)
= gcd

(
F

(1)
6n−2 − (F5 − 1), F

(1)
6n+5 + (F4 + 1)

)
When iteratively applying relation (11) and the basic properties of the gcd function
we obtain

gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= gcd

(
F

(1)
3n+1 − (F3n+2 − 1), F

(1)
3n+2 + (F3n+1 + 1)

)
. (16)

From the fact that the sum of the first n numbers in Fibonacci sequence (Fn)n≥0 is
equal to Fn+2 − 1, we immediately have

F (1)
n = Fn+2 − 1. (17)

We substitute (17) into r.h.s. of relation (16) to get

gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= gcd

(
F3n+1, F3n+4

)
. (18)

Having in mind that

gcd(3n+ 1, 3n+ 4) = gcd(3n+ 1, 3)

= 1

we finally have

gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= gcd

(
F3n+1, F3n+4

)
= Fgcd(3n+1,3n+4) = F1

= 1.
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Proof. ii) Once having equality

gcd
(
F

(1)
6n+2, F

(1)
6n+3

)
= gcd

(
F3n+3, F3n

)
we get

gcd(3n+ 3, 3n) = (3n, 3)

= 3

and finally

gcd
(
F

(1)
6n+2, F

(1)
6n+3

)
= gcd

(
F3n+3, F3n

)
= F3 = 2.

iii) Having in mind that

gcd(3n+ 2, 3n+ 5) = gcd(3n+ 2, 3)

= gcd(2, 3) = 1

we obtain

gcd
(
F

(1)
6n+6, F

(1)
6n+7

)
= gcd

(
F3n+5, F3n+2

)
= Fgcd (3n+5,3n+2)

= F1 = 1.

which completes the proof.

We consider the alternative way of calculating gcd(F
(1)
n , F

(1)
n+1). The gcd(F

(1)
n , F

(1)
n+1)

can be written as

gcd(F (1)
n , F

(1)
n+1) =

gcd(Fn+2 − 1, Fn+3 − 1) = gcd(Fn+2 − F−1, Fn+3 + F−2) =

gcd(Fn+2 − F−1, Fn+1 + F0) = gcd(Fn − F1, Fn+1 + F0) =

gcd(Fn − F1, Fn−1 + F2) = gcd(Fn−2 − F3, Fn−1 + F2) =

gcd(Fn−2 − F3, Fn−3 + F4) = gcd(Fn−4 − F5, Fn−3 + F4) = ... =

gcd (Fn−2k − F2k+1, Fn−2k+1 + F2k)

Now it follows:
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(a) n = 4m, k = m, gcd(F
(1)
4m , F

(1)
4m+1) = gcd (F2m − F2m+1, F2m+1 + F2m) =

gcd (−F2m−1, F2m+2) = gcd (F2m−1, F2m+2) = Fgcd(2m−1,2m+2) = Fgcd(m+1,3) =
Fgcd(n+1,3)

(b) n = 4m+1, k = m, gcd(F
(1)
4m+1, F

(1)
4m+2) = gcd (F2m+1 − F2m+1, F2m+2 + F2m) =

gcd (0, L2m+1) = Ln+1
2

(c) n = 4m+2, k = m, gcd(F
(1)
4m+2, F

(1)
4m+3) = gcd (F2m+2 − F2m+1, F2m+3 + F2m) =

gcd (F2m, F2m+3 + F2m) = gcd (F2m, F2m+3) = Fgcd(2m,2m+3) = Fgcd(m,3) = Fgcd(n,3)

(d) n = 4m+3, k = m+1, gcd(F
(1)
4m+3, F

(1)
4m+4) = gcd (F2m+1 − F2m+3, F2m+2 + F2m+2) =

gcd (−F2m+2, 2F2m+2) = F2m+2 = Fn+1
2

4 Congruences for F
(1)
p−1, F

(1)
p−2 and F

(1)
p−3

Once having relation (17), we immediately obtain congruences for F
(1)
p−2, by substi-

tution into (7). We present these congruences in the following Theorem 3, where we
also give more detailed proof.

Theorem 3. Let p be an odd prime. Then for the hyperfibonacci sequence we have

F
(1)
p−2 ≡

(p
5

)
− 1 (mod p). (19)

Proof. When applying the binomial theorem to the Binet’s formula we get

F
(1)
p−2 =

1√
5

[(
1 +
√

5

2

)p

−

(
1−
√

5

2

)p]
− 1

=
1

2p
√

5

p∑
k=0

(
p

k

)(
(
√

5)k − (−
√

5)k
)
− 1

=
1

2p−1

p∑
k=0, 2- k

(
p

k

)
5

k−1
2 − 1

Having in mind an obvious fact that p |
(
p
k

)
, k = 1, 2, . . . , p− 1 we obtain

1 + 2p−1F
(1)
p−2 ≡ 5

p−1
2 (mod p)

and furthermore from the Euler’s criterion

1 + 2p−1F
(1)
p−2 ≡

(5

p

)
(mod p).
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In the similar fashion one can prove Theorem 4. Both congruences in Theorem
4 also follows by substitution of (17) into (8).

Theorem 4. Let p be an odd prime. Then for the hyperfibonacci sequence we have

F
(1)
p−3 ≡

−1−
(
p
5

)
2

(mod p) (20)

and

F
(1)
p−1 ≡

−1 +
(
p
5

)
2

(mod p). (21)

According to the quadratic reciprocity theorem we get equality(5

p

)
=
(p

5

)
which gives (p

5

)
=

{
1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5).

when we employ basic properties of the Legendre symbol. Now we have immediate
consequences of Theorems 3 and 4. Corollary 3 follows from the congruence (20)
while Corollary 4 follows from congruences (19) and (21).

Corollary 3. Let p be a prime such that p ≡ ±2 (mod 5). Then p | F (1)
p−3.

Corollary 4. Let p be a prime such that p ≡ ±1 (mod 5). Then p | F (1)
p−2 and

p | F (1)
p−1.

5 Concluding remarks and open questions

We believe that results obtained in this paper can be extended to other families
of strong divisibility sequences. It would be of interest to find periodicity of gcd
for other generation of hyperfibonacci numbers and possibly to give statements in
full generality. There are also a few other generalization of recursive sequences of
numbers ([9, 12, 15]) and it is of interest to see an extension of property (2) within
these sequences. Some further generalizations and extensions of these sequences
would be of interest as well.
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