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Randić index,
Gutman index,..., Zagreb index, Szeged Index,..., Mostar index,...,
Atom-bond connectivity index,...

Carbon molecules: Benzenoids, Nanotubes, Fulerenes, Nanotori,...

Energy of molecules: Specter, Laplacian Specter,...



I. Part:
Chemical Graph Theory

Molecular descriptors: Wiener index, Balaban Index, Randić index,
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A. Balaban

A. Graovac

...

...

H. Kroto



Pioneers

I. Gutman

N. Trinajstić
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M. Randić
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Wiener index

Wiener index
W (G) =

∑
{u,v}⊆V (G)

d(u, v)

was introduced in 1947 by the chemist H. Wiener for its correlation with
the boiling point of alkane molecules CnH2n+2.



Wiener index

Wiener index
W (G) =

∑
{u,v}⊆V (G)

d(u, v)

was introduced in 1947 by the chemist H. Wiener for its correlation with
the boiling point of alkane molecules CnH2n+2.



Theorem (Wiener)

For every tree T , it holds

W (T ) =
∑

e=uv∈E(T )

ne(u)ne(v), (1)

where ne(u) is the number of vertices in the component of T − e that
contains u, and similarly define ne(v).

T

W(T)=188

3.(1.10)
3.(2.9)
2.(3.8)
2.(4.7)
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Szeged index
Definition

Another popular topological index is the Szeged index

Sz(G) =
∑

e=uv∈E(G)

ne(u) · ne(v),

where ne(u) is the number of vertices strictly closer to u than v, and
analogously, ne(v) is the number of vertices strictly closer to v.

This is well known:

Theorem (A. Dobrynin, I. Gutman, S. Klavžar, A. Rajapakse)

For every graph G we have

Sz(G) ≥W (G) (2)

and equality holds if and only if every block of G is a complete graph.
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Variable Wiener vs. Variable Szeged
Variable variations

Definition
The variable Wiener index of a graph G

Wα(G) =
∑

{u,v}⊆V (G)

d(u, v)α.

Definition
The variable Szeged index of a graph G

Szα(G) =
∑

e=uv∈E(G)

[ne(u) · ne(v)]α.
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Some others

Mostar index:
M(G) =

∑
e=uv∈E(G)

|ne(u)− ne(v)|,

Gutman index

Gut(G) =
∑

{u,v}⊆V (G)

d(u)d(v)d(u, v).
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3 Šoltés Problem



II. Part:
Survey

Few sections:

1 Minimum Wiener index for chemical graphs

2 Regular graphs vs. diameter
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1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn

Minimum and maximum for all trees: Sn and Pn

Minimum and maximum for all chemical trees: Dendrimers and Pn

Maximum for all chemical graphs: Pn

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.



1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn

Minimum and maximum for all trees: Sn and Pn

Minimum and maximum for all chemical trees: Dendrimers and Pn

Maximum for all chemical graphs: Pn

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.



1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn

Minimum and maximum for all trees: Sn and Pn

Minimum and maximum for all chemical trees: Dendrimers and Pn

Maximum for all chemical graphs: Pn

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.



1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn

Minimum and maximum for all trees: Sn and Pn

Minimum and maximum for all chemical trees: Dendrimers and Pn

Maximum for all chemical graphs: Pn

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.



1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn

Minimum and maximum for all trees: Sn and Pn

Minimum and maximum for all chemical trees: Dendrimers and Pn

Maximum for all chemical graphs: Pn

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.



1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn

Minimum and maximum for all trees: Sn and Pn

Minimum and maximum for all chemical trees: Dendrimers and Pn

Maximum for all chemical graphs: Pn

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.



1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn

Minimum and maximum for all trees: Sn and Pn

Minimum and maximum for all chemical trees: Dendrimers and Pn

Maximum for all chemical graphs: Pn

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.



1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn

Minimum and maximum for all trees: Sn and Pn

Minimum and maximum for all chemical trees: Dendrimers and Pn

Maximum for all chemical graphs: Pn

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.



1. Minimum Wiener index for chemical graphs
Graphs of small order

Small n

n = 1, 2, . . . , 5: Kn

n = 6:

n = 7:



1. Minimum Wiener index for chemical graphs
Graphs of small order

Small n

n = 1, 2, . . . , 5: Kn

n = 6:

n = 7:



1. Minimum Wiener index for chemical graphs
Graphs of small order

Small n

n = 1, 2, . . . , 5: Kn

n = 6:

n = 7:



1. Minimum Wiener index for chemical graphs
Graphs of small order

Small n

n = 1, 2, . . . , 5: Kn

n = 6:

n = 7:



1. Minimum Wiener index for chemical graphs
The conjecture

n = 8: There are 1929 such graphs and minimum Wiener index
value is 40, which is attained by only 6 graphs.



1. Minimum Wiener index for chemical graphs

Conjecture

Every chemical graphs G on n ≥ 5 vertices with the minimum value of
Wiener index is 4-regular.



1. Minimum Wiener index for chemical graphs
Going to higher degrees

We think the following may hold:

Conjecture (The even case)

Let G be a graph on n vertices with the maximum degree k, and with
the smallest possible value of Wiener index among such graphs. If kn is
even, then G is k-regular.

Conjecture (The odd case)

Let G be a graph on n vertices with the maximum degree k, and with
the smallest possible value of Wiener index among such graphs. If kn is
odd, then G has a unique vertex of degree smaller than k and in that
case this smaller degree is k − 1.

We assume n >> k + 1.
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2. Regular graphs vs. diameter
Minumum values

Conjecture

Among all r-regular graphs on n vertices, the minimum Wiener index is
attained by a graph with the minimum possible diameter.

Examples: Petersen graph, Flower snark J5, Heawood graph

Problem (The degree-diameter problem)

Determine the largest order n(k, d) of a graph of (a maximum) degree k
and diameter d.

Petersen graph appears in n(3, 2), J5 appears in n(3, 3),
Heawood graph does not appear there but it is a cage graph Cage(3,6).
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Maximum values

Conjecture

Among all r-regular graphs on n vertices, the maximum Wiener index is
attained by a graph with the maximum possible diameter.

Figure: Graphs L4k+2 (above) and L4k+4 (below).

Y.-Z. Chen, X. Li, X.-D. Zhang recently confirmed the last conjecture for
r = 3 with extremal graphs being Ln.
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The original problem

In 1991, L. Šoltés posed the following problem:

Problem
Find all graphs G for which

W (G) = W (G− v) (3)

for every v ∈ V (G).

One such graph is C11, as

W (C11) = 165 = W (P10)

This is the only graph we know §

We say v satisfies Soltés property if (3) holds, i.e.

W (G) = W (G− v).
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3. Šoltés problem
The original problem
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In 1991, L. Šoltés posed the following problem:

Problem
Find all graphs G for which

W (G) = W (G− v) (3)

for every v ∈ V (G).

One such graph is C11,

as

W (C11) = 165 = W (P10)

This is the only graph we know §

We say v satisfies Soltés property if (3) holds, i.e.

W (G) = W (G− v).
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In 1991, L. Šoltés posed the following problem:

Problem
Find all graphs G for which

W (G) = W (G− v) (3)

for every v ∈ V (G).

One such graph is C11, as

W (C11) = 165 = W (P10)

This is the only graph we know §

We say v satisfies Soltés property if (3) holds, i.e.

W (G) = W (G− v).
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3. Šoltés problem
The weaker version

Theorem (M. Knor, S. Majstorović, R. Š.)

There exist infinitely many graphs G with a particular vertex v such that

W (G) = W (G− v)

holds.

More precisely:

for each n ≥ 9, there is a unicyclic graph G on n vertices containing
a vertex v that satisfies the Šoltés property;

for each c ≥ 5, there is a unicyclic graph G with a cycle of length c
and a vertex that satisfies the Šoltés property;

for every graph G there are infinitely many graphs H such that G is
an induced subgraph of H and W (H) = W (H − v) for some
v ∈ V (H) \ V (G).
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Together with Nino Bašić and Martin Knor we worked on constructing
cubic graphs with many Soltés vertices.
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3. Šoltés problem

Kriva je

Do not drink and work!
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3. Šoltés problem

For a general (regular) graph G, the values

W (G− u) and W (G− v)

might be significantly different for two different vertices u and v from G.

It may happen that removal of one vertex increases the Wiener index,
while removal of the other vertex decreases it.

However, W (G− u) and W (G− v) are equal if vertices u and v belong
to the same vertex orbit.

A computer search on publicly available collections of vertex-transitive
graphs did not reveal any Soltés graph.
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3. Šoltés problem
Last slide

Stijn Cambie: At this point I do not even dare to conjecture or believe

if
there are no, a few or infinitely many other Šoltes graphs.
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Šta da mu kažem!
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