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A. Balaban
Re: quartic graphs = inbox x ¥
Balaban, Alexandru T Sun, 7Apr, 2322 Y% @
tome «
Dar Riste,

After my 93rd anniversary, | would klike to renew our correspondence.
How are you? Please let me know .

Best wishes,

Sandy
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tome «
Dar Riste,

After my 93rd anniversary, | would klike to renew our correspondence.
How are you? Please let me know .

Best wishes,

Sandy

Sta da mu kaZem!
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Balaban 10-cage

The Balaban 10-cage

Named after Alexandru T. Balaban
Vertices 70

Edges 105

Radius 6

Diameter 6

Girth 10

Automorphisms 80

Chromatic number 2

Chromatic index 3

Book thickness 3

Queue number 2

Properties Cubic
Cage
Hamiltonian

Table of graphs and parameters




Balaban cages
Balaban 10 and Balaban 11 cages

Balaban 10-cage

The Balaban 10-cage
Named after

Vertices

Edges

Radius

Diameter

Girth
Automorphisms
Chromatic number
Chromatic index
Book thickness
Queue number

Properties

Alexandru T. Balaban
70
105

3

2

Cubic
Cage
Hamiltonian

Table of graphs and parameters

Balaban 11-cage

Named after Alexandru T. Balaban
Vertices 12

Edges 168

Radius 6

Diameter 8

Girth 11

Automorphisms 64

Chromatic number 3

Chromatic index 3
Properties Cubic
Cage
Hamiltonian

Table of graphs and parameters
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Theorem (Wiener)
For every tree T, it holds

W(T) = Z ne(uw) ne(v),

e=uwveE(T)

where n.(u) is the number of vertices in the component of T — e that
contains u, and similarly define n.(v).
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W(T) = Z ne(uw) ne(v),

e=uwveE(T)

where n.(u) is the number of vertices in the component of T — e that
contains u, and similarly define n.(v).

(1)

3-(1-10)

3-(2:9)

2:(3-8) W(T)=188
2-(4-7)
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Szeged index

Definition
Another popular topological index is the Szeged index

Sz(G) = > me(u) - ne(v),

e=uveE(G)

where n.(u) is the number of vertices strictly closer to u than v, and
analogously, n.(v) is the number of vertices strictly closer to v.

This is well known:

Theorem (A. Dobrynin, |. Gutman, S. Klavzar, A. Rajapakse)
For every graph G we have

Sz2(G) =2 W(G) ()

and equality holds if and only if every block of G is a complete graph.
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Variable Wiener vs. Variable Szeged

Variable variations

Definition
The variable Wiener index of a graph G
W G) = Z d(u,v)®.

{u,v}CV(G)

Definition
The variable Szeged index of a graph G
S2(@) = Y [ne(w) - ne(®)].

e=uwveE(G)




Some others

Mostar index:

M@= Y Ine(u) —ne(v)],

e=wveE(G)
Gutman index

Gut(G) = Z d(u)d(v)d(u,v).

{u,v}CV(G)
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1. Minimum Wiener index for chemical graphs

The forgotten problem

It is well known that
@ Minimum and maximum for all graphs: K, and P,
@ Minimum and maximum for all trees: S,, and P,
@ Minimum and maximum for all chemical trees: Dendrimers and P,
°

Maximum for all chemical graphs: P,

An “overlooked” problem

Problem

Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

e G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

@ Computer experiments are indicating that G is a 4-regular graph.
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Graphs of small order

Small n
en=12...,5: K,
en==~6

en=="r:



1. Minimum Wiener index for chemical graphs

The conjecture

@ n = 8: There are 1929 such graphs and minimum Wiener index
value is 40, which is attained by only 6 graphs.

(3D
D




1. Minimum Wiener index for chemical graphs

Conjecture

Every chemical graphs G on n > 5 vertices with the minimum value of
Wiener index is 4-regular.
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1. Minimum Wiener index for chemical graphs
Going to higher degrees

We think the following may hold:
Conjecture (The even case)

Let G be a graph on n vertices with the maximum degree k, and with
the smallest possible value of Wiener index among such graphs. If kn is
even, then G is k-regular.

Conjecture (The odd case)

Let G' be a graph on n vertices with the maximum degree k, and with
the smallest possible value of Wiener index among such graphs. If kn is
odd, then G has a unique vertex of degree smaller than k and in that
case this smaller degree is k — 1.

We assume n >> k + 1.
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2. Regular graphs vs. diameter

Minumum values

Conjecture

Among all r-regular graphs on n vertices, the minimum Wiener index is
attained by a graph with the minimum possible diameter.

Examples: Petersen graph, Flower snark J;, Heawood graph

Problem (The degree-diameter problem)

Determine the largest order n(k,d) of a graph of (a maximum) degree k
and diameter d.

Petersen graph appears in n(3,2), J; appears in n(3,3),
Heawood graph does not appear there but it is a cage graph Cage(3,6).
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2. Regular graphs vs. diameter

Maximum values

Conjecture

Among all r-regular graphs on n vertices, the maximum Wiener index is
attained by a graph with the maximum possible diameter.

Figure: Graphs Lakyo2 (above) and Lagya (below).

Y.-Z. Chen, X. Li, X.-D. Zhang recently confirmed the last conjecture for
r = 3 with extremal graphs being L,,.
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3. Soltés problem

The original problem

Math. Slovaca 41, 1991, No. 1, 11—16

TRANSMISSION IN GRAPHS :
A BOUND AND VERTEX REMOVING

LUBOMIR SOLTES

ABSTRACT. The transmission of a graph G is the sum of all distances in G. Strict
upper bound on the transmission of a connected graph with a given number of
vertices and edges is provided. Changes of the transmission caused by removing a
vertex are studied.

1. Introduction

All graphs considered in this paper are undirected without loops and multiple
edges. For all terminology on graphs not explained here we refer to [1].

If S is set, then | S| denotes the cardinality of S. Given a graph G, V(G) and
E(G) denote its vertex-set and edge-set, respectively. The cardinalities |v(G)|
and | E(G)| are often denoted n and m, respectively. If v and w are the vertices
of G, then d; (v, w) or, briefly, d (v, w) denotes the distance from v to w in G, ec(v)
or ec(v) denotes the eccentricity of v.

The transmission of a vertex v of a graph G is defined by

o)=Y ds(v,w).
we V(G)
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The original problem
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(it follows from (Dj)). Hence (4) holds and we immediately get
F(G, v) = —(290(v) + (¢ — ) o(G — v)),

which is minimal if and only if G is the path on n vertices. We wil not deal here
with further technical details.
Eventually the following unsolved problem is presented.

Problem. Find all such graphs G that the equality ¢(G) = o(G — v) holds for
all their vertices v. We know just one such graph — the cycle on I1 vertices.

REFERENCES

[1] BEHZAD,M.—CHARTRAND, G.—LESNIAK — FOSTER, L.: Graphs and Digrphs. Weber
& Schmidt, Boston 1979.

[2] ENTRINGER,R.C. JACKSON,D.E. SNYDER, D. A_: Distance in graphs. Czech Math.
J.. 26 (101), 1976, 283—296.
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3. Soltés problem

The original problem

In 1991, L. Soltés posed the following problem:

Problem
Find all graphs G for which

for every v € V(G).

One such graph is Cyy, as
W(C11) = 165 = W (Pyp)
This is the only graph we know ©
We say v satisfies Soltés property if (3) holds, i.e.
W(G) =W(G —v).
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3. Soltés problem

The weaker version

Theorem (M. Knor, S. Majstorovi¢, R. §)

There exist infinitely many graphs G with a particular vertex v such that
W(G) =W (G —wv)

holds.

More precisely:

o for each n > 9, there is a unicyclic graph G on n vertices containing
a vertex v that satisfies the Soltés property;

@ for each ¢ > 5, there is a unicyclic graph G with a cycle of length ¢
and a vertex that satisfies the Soltés property;

o for every graph G there are infinitely many graphs H such that G is
an induced subgraph of H and W(H) = W(H — v) for some
veV(H)\V(G).



3. Soltés problem

Together with Nino Basi¢ and Martin Knor we worked on constructing
cubic graphs with many Soltés vertices.

https:/doi.org/10.26493/1855-3974.3085.3ea
(Also available at http://amc-journal.eu)

On regular graphs with Soltés vertices*

Nino Basi¢
FAMNIT, University of Primorska, Koper, Slovenia and
1AM, University of Primorska, Koper, Slovenia and
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

Martin Knor *
Slovak University of Technology in Bratislava, Slovakia

Riste Skrekoveki
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We end up with:

Conjecture

If G is a Soltés graph, then it is regular.

Conjecture

If G is a Soltés graph, then G is vertex-transitive.

Conjecture

If G is a Soltés graph, then G is a Cayley graph.

Conjecture

The cycle Cy; is the only Soltés graph.
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Kriva je

Do not drink and work!



3. Soltés problem

For a general (regular) graph G, the values
W(G — u) and W(G —v)

might be significantly different for two different vertices v and v from G.



3. Soltés problem
For a general (regular) graph G, the values
W(G — u) and W(G —v)
might be significantly different for two different vertices v and v from G.

It may happen that removal of one vertex increases the Wiener index,
while removal of the other vertex decreases it.



3. Soltés problem
For a general (regular) graph G, the values
W(G — u) and W(G —v)
might be significantly different for two different vertices v and v from G.

It may happen that removal of one vertex increases the Wiener index,
while removal of the other vertex decreases it.



3. Soltés problem

For a general (regular) graph G, the values
W(G — u) and W(G —v)
might be significantly different for two different vertices v and v from G.

It may happen that removal of one vertex increases the Wiener index,
while removal of the other vertex decreases it.

However, W (G — u) and W(G — v) are equal if vertices u and v belong
to the same vertex orbit.



3. Soltés problem

For a general (regular) graph G, the values
W(G — u) and W(G —v)
might be significantly different for two different vertices v and v from G.

It may happen that removal of one vertex increases the Wiener index,
while removal of the other vertex decreases it.

However, W (G — u) and W(G — v) are equal if vertices u and v belong
to the same vertex orbit.

A computer search on publicly available collections of vertex-transitive
graphs did not reveal any Soltés graph.
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3. Soltés problem

Soltés problem is a balance between opposites:

Figure: Yin-Yang
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Snowball effect

Some more people became interested: Dragan Stevanovi¢, Stijn Cambie,
Andrej Dobrynin, Jan Bok, some group form China and some group from
Russia, PrimoZ Poto&nik, Marston Conder, Tomislav Doslié, ...

We got snowball effect thanks to Snjezal




THE END ©
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Last slide

Stijn Cambie: At this point | do not even dare to conjecture or believe if
there are no, a few or infinitely many other Soltes graphs.

Sta da mu kaZem!



