Some notes on generalized Pell graphs

Elif Tan (Joint work with Sandi Klavžar and Vesna Irsic)

Ankara University

The 5th Croatian Combinatorial Days, Zagreb

Elif Tan (Ankara University)

Fibonacci and Lucas cubes

2 Pell graphs

A B > A B >

• The Fibonacci numbers are defined by the recurrence relation

$$F_n=F_{n-1}+F_{n-2}, \quad n\geq 2$$

with the initial conditions $F_0 = 0$ and $F_1 = 1$.

 The Lucas numbers satisfy the same recurrence relation as Fibonacci numbers

$$L_n=L_{n-1}+L_{n-2}, \quad n\geq 2$$

but begin with the initial conditions $L_0 = 2$ and $L_1 = 1$.

Combinatorial interpretation (Benjamin and Quinn, 2003)

• *F*_{*n*+1} counts the number of tilings of an *n*-board using squares and dominoes.

Combinatorial interpretation (Benjamin and Quinn, 2003)

• *F*_{*n*+1} counts the number of tilings of an *n*-board using squares and dominoes.

- *F*_{*n*+1} counts the number of tilings of an *n*-board using squares and dominoes.
- $1 \times n$ -board • $s \longrightarrow (1 \times n)$ -board • $s \longrightarrow (1 \times 1)$ -square • $d \longrightarrow (1 \times 2)$ -domino
- *L_n* counts the number of circular tilings of an *n*-board using squares and dominoes.

Hypercubes

• The hypercube graph Q_n of dimension n is one of the most famous models for interconnection networks. $V(Q_n) = \{b_1 b_2 \dots b_n | b_i \in \{0, 1\}\}, |V(Q_n)| = 2^n$ $E(Q_n) = \{(u, v) | u, v \in V(Q_n), d_H(u, v) = 1\}, |E(Q_n)| = n2^{n-1}$ 1111 101/ 1101 111011 110 0011 0101 ATTO 11 012 101 110101Ø 100 00 010 100 0001 AATA ATOC 10 0

Figure: Hypercubes Q_1, Q_2, Q_3 and Q_4 .

▲ 原 ▶ | 4 周 ▶

Fibonacci cubes (Hsu, 1993)

• The *n* dimensional Fibonacci cube Γ_n is obtained by removing vertices in that have two consecutive 1s in its binary labeling.

$$V(\Gamma_n) = \{b_1 b_2 \dots b_n | b_i \in \{0, 1\}, b_i b_{i+1} = 0\}$$

$$E(\Gamma_n) = \{(u, v) | u, v \in V(\Gamma_n), d_H(u, v) = 1\}$$

Figure: Fibonacci cubes $\Gamma_1, \Gamma_2, \Gamma_3$ and Γ_4 .

Fibonacci cubes

- $|V(\Gamma_n)| = F_{n+2}$
- $|E(\Gamma_n)| = \frac{nF_{n+1}+2(n+1)F_n}{5}$
- $\Gamma_n = 0\Gamma_{n-1} \oplus 10\Gamma_{n-2}, n \ge 2$

• • = • • = •

Э

Lucas cubes (Munarini et al., 1999)

• The Lucas cube
$$\Lambda_n$$
 is the graph with
 $V(\Lambda_n) = \{b_1 b_2 ... b_n | b_i \in \{0, 1\}, b_i b_{i+1} = 0, b_1 b_n = 0\}$
 $E(\Lambda_n) = \{(u, v) | u, v \in V(\Lambda_n), d_H(u, v) = 1\}$

A B > A B >

Lucas cubes (Munarini et al., 1999)

- The Lucas cube Λ_n is the graph with $V(\Lambda_n) = \{b_1 b_2 ... b_n | b_i \in \{0, 1\}, b_i b_{i+1} = 0, b_1 b_n = 0\}$ $E(\Lambda_n) = \{(u, v) | u, v \in V(\Lambda_n), d_H(u, v) = 1\}$
- $|V(\Lambda_n)| = L_n$
- $|E(\Lambda_n)| = nF_{n-1}$
- $\Lambda_n = 0\Gamma_{n-1} \oplus 10\Gamma_{n-3}0, n \ge 3$

• • E • • E •

 A Pell string is a word over the alphabet T = {0,1,2} such that there are no runs of 2s of odd length. Equivalently, a Pell string is a word over the alphabet T' = {0,1,22}.

김 글 에 레크 어

- A *Pell string* is a word over the alphabet T = {0,1,2} such that there are no runs of 2s of odd length. Equivalently, a *Pell string* is a word over the alphabet T' = {0,1,22}.
- Let \mathcal{P}_n denote the set of *Pell strings* of length *n*. Then $\mathcal{P}_0 = \{\varepsilon\}, \mathcal{P}_1 = \{0, 1\}$ and for $n \ge 0$,

$$\mathcal{P}_{n+2} = 0\mathcal{P}_{n+1} + 1\mathcal{P}_{n+1} + 22\mathcal{P}_n$$

Thus $|\mathcal{P}_n| = P_{n+1}$, where P_n is the *n*th Pell number defined by

$$P_n = 2P_{n-1} + P_{n-2}, n \ge 2$$

with the initial conditions $P_0 = 0$ and $P_1 = 1$.

医水黄医水黄医医

Pell Graphs

 The Pell graph Π_n has V(Π_n) = P_n and adjacency: 0 ↔ 1 or 11 ↔ 22

Pell Graphs

• $\Pi_n = 0\Pi_{n-1} \oplus 1\Pi_{n-1} \oplus 22\Pi_{n-2}, \ n \ge 2$

A B > A B >

Э

Generalized Pell Graphs (Klavzar et al., 2023)

For k ≥ 2, the generalized Pell string is a string over the alphabet {0, 1, ..., k − 1, kk} such that each run of k is even length.
 When k = 2, we get the Pell string.

A B > A B >

Generalized Pell Graphs (Klavzar et al., 2023)

- For k ≥ 2, the generalized Pell string is a string over the alphabet {0,1,..., k − 1, kk} such that each run of k is even length.
 When k = 2, we get the Pell string.
- Let $\mathcal{F}_{n,k}$ denote the set of generalized Pell strings of length n. Then Clearly, $\mathcal{F}_{0,k} = \{\varepsilon\}$ and $\mathcal{F}_{1,k} = \{0, 1, ..., k 1\}$, while for $n \ge 2$ we have

$$\mathcal{F}_{n,k} = 0\mathcal{F}_{n-1,k} + 1\mathcal{F}_{n-1,k} + \ldots + (k-1)\mathcal{F}_{n-1,k} + kk\mathcal{F}_{n-2,k}.$$

• $|\mathcal{F}_{n,k}| = F_{n+1,k}$ where $F_{n,k}$ is the *n*th *k*-Fibonacci number defined by

$$F_{n,k} = kF_{n-1,k} + F_{n-2,k}, \quad n \ge 2$$

with the initial conditions $F_{0,k} = 0$ and $F_{1,k} = 1$.

• • = • • = •

• The Generalized Pell graph $\Pi_{n,k}$ has $V(\Pi_{n,k}) = \mathcal{F}_{n,k}$ and adjacency: $i \leftrightarrow i + 1$ for $i \in \{0, 1, ..., k - 2\}$ or $(k - 1)(k - 1) \leftrightarrow kk$

Figure: Generalized Pell graphs $\Pi_{n,3}$ for $n \in \{0, 1, 2\}$.

Generalized Pell Graphs

Figure: Generalized Pell graph $\Pi_{3,3}$

▲ 原 ▶ | 4 国 ≯

• The fundamental decomposition of the Generalized Pell graph $\Pi_{n,k}$ is

$$\Pi_{n,k} = 0\Pi_{n-1,k} \oplus 1\Pi_{n-1}, k \oplus ... \oplus (k-1)\Pi_{n-1,k} \oplus kk\Pi_{n-2,k}$$

with $\Pi_{0,k} = K_1$ and $\Pi_{1,k}$ is the path on k vertices.

A B > A B >

э

Generalized Pell Graphs

Elif Tan (Ankara University)

From the fundamental decomposition of Π_{n,k}, the edges of Π_{n,k} are of the following four types:
(i) edges from k copies of Π_{n-1,k}
(ii) edges from Π_{n-2,k}
(iii) the link edges between the vertices in the k copies of Π_{n-1,k}
(iv) the link edges between the vertices in kkΠ_{n-2,k} and (k-1)(k-1)Π_{n-2,k}

A B > A B >

From the fundamental decomposition of Π_{n,k}, the edges of Π_{n,k} are of the following four types:
(i) edges from k copies of Π_{n-1,k}
(ii) edges from Π_{n-2,k}
(iii) the link edges between the vertices in the k copies of Π_{n-1,k}
(iv) the link edges between the vertices in kkΠ_{n-2,k} and (k-1)(k-1)Π_{n-2,k}
For n > 2,

$$|E(\Pi_{n,k})| = k|E(\Pi_{n-1,k})| + |E(\Pi_{n-2,k})| + (k-1)F_{n,k} + F_{n-1,k}$$

with $|E(\Pi_{0,k})| = 0$ and $|E(\Pi_{1,k})| = k - 1$.

医水黄医水黄医医

• The generating function of the number of edges in $\Pi_{n,k}$ is

$$\sum_{n\geq 0} |E(\Pi_{n,k})|t^n = \frac{(k-1+t)t}{(1-kt-t^2)^2}$$

$$|E(\Pi_{n,k})| = \sum_{i=0}^{n} F_{i,k}(F_{n-i+2,k} - F_{n-i+1,k})$$

Elif Tan (Ankara University)

۲

18 / 24

A B > A B >

Э

• The cube polynomial of a graph G, denoted by $C_G(x)$, is the counting polynomial defined by the generating function

$$C_G(x) = \sum_{i \ge 0} c_i(G) x^i$$

where $c_i(G)$ counts the number of induced *i*-cubes in *G*. Clearly, $c_0(G) = |V(G)|, c_1(G) = |E(G)|.$

(4) ほうり (4) ほうり

э

• The cube polynomial of a graph G, denoted by $C_G(x)$, is the counting polynomial defined by the generating function

$$C_G(x) = \sum_{i \ge 0} c_i(G) x^i$$

where $c_i(G)$ counts the number of induced *i*-cubes in *G*. Clearly, $c_0(G) = |V(G)|, c_1(G) = |E(G)|.$

• The first few cube polynomials of $\Pi_{n,k}$ are listed below:

•
$$C_{\Pi_{0,k}}(x) = 1$$

• $C_{\Pi_{1,k}}(x) = k + (k-1)x$
• $C_{\Pi_{2,k}}(x) = k^2 + 1 + (2k^2 - 2k + 1)x + (k^2 - 2k + 1)x^2$
• $C_{\Pi_{3,k}}(x) = k^3 + 2k + (3k^3 - 3k^2 + 4k - 2)x + (3k^3 - 6k^2 + 5k - 2)x^2 + (k^3 - 3k^2 + 3k - 1)x^3$

(4) ほうり (4) ほうり

• The cube polynomials $C_{\prod_{n,k}}(x)$ satisfy the recurrence relation

$$C_{\prod_{n,k}}(x) = (k + (k-1)x)C_{\prod_{n-1,k}}(x) + (1+x)C_{\prod_{n-2,k}}(x), n \ge 2$$

with the initial values $C_{0,k}(x) = 1$ and $C_{\Pi_{1,k}}(x) = k + (k-1)x$.

۲

$$C_{\prod_{n,k}}(x) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} {\binom{n-i}{i}} \left(k + (k-1)x\right)^{n-2i} \left(1+x\right)^{i}.$$

Elif Tan (Ankara University)

20/24

• • = • • = •

э

Some graph theoretic properties

- The graph $\Pi_{n,k}$ has a Hamiltonian path.
- $\Pi_{n,k} \subseteq \Gamma_{(2k-2)n-1}$
- eccentricity(u) = max d(u, v) for all $v \in V(\Pi_{n,k})$ diam($\Pi_{n,k}$) = $nk - \lfloor \frac{n}{2} \rfloor$ rad($\Pi_{n,k}$) = $\lfloor \frac{nk}{2} \rfloor$
- The center consists of vertices whose eccentricity equals the radius.

$$|C(\Pi_{n,k})| = \begin{cases} F_{n+2}; & k \text{ even,} \\ (n+4)2^{\frac{n}{2}-2}; & k \text{ odd and } n \text{ even,} \\ 2^{\frac{n-1}{2}}; & k \text{ odd and } n \text{ odd.} \end{cases}$$

▲ Ξ ► 4 Ξ ►

Some graph theoretic properties

Elif Tan (Ankara University)

 Iršič V., Klavžar S., Tan E. Generalized Pell graphs, Turkish Journal of Mathematics, 47(7), 1955-1973, 2023.

A B > A B >

э

Thank you for your attention! Teşekkür ederim!

The 22nd International Fibonacci Conference will be held in Istanbul in July 2026!

▲ 原 ▶ | 4 周 ▶

Э