Some notes on generalized Pell graphs

Elif Tan (Joint work with Sandi Klavžar and Vesna Irsic)

Ankara University

The 5th Croatian Combinatorial Days, Zagreb

1 Fibonacci and Lucas cubes

2 Pell graphs

4 **D F**

化复制 化重变

走

 298

• The Fibonacci numbers are defined by the recurrence relation

$$
F_n = F_{n-1} + F_{n-2}, \quad n \ge 2
$$

with the initial conditions $F_0 = 0$ and $F_1 = 1$.

• The Lucas numbers satisfy the same recurrence relation as Fibonacci numbers

$$
L_n=L_{n-1}+L_{n-2},\quad n\geq 2
$$

but begin with the initial conditions $L_0 = 2$ and $L_1 = 1$.

つへへ

Combinatorial interpretation (Benjamin and Quinn, 2003)

 \bullet F_{n+1} counts the number of tilings of an *n*-board using squares and dominoes.

Combinatorial interpretation (Benjamin and Quinn, 2003)

 \bullet F_{n+1} counts the number of tilings of an *n*-board using squares and dominoes.

- \bullet F_{n+1} counts the number of tilings of an *n*-board using squares and dominoes.
- \rightarrow (1 \times n)-board \bullet 1 2 ... n \bullet
	- \rightarrow (1 \times 1)-square
		- d \rightarrow (1 \times 2)-domino
- L_n counts the number of circular tilings of an *n*-board using squares \bullet and dominoes.

 \bullet

Hypercubes

• The hypercube graph Q_n of dimension *n* is one of the most famous models for interconnection networks. $V(Q_n) = \{b_1b_2...b_n|b_i \in \{0,1\}\}, |V(Q_n)| = 2^n$ $E(Q_n) = \{(u, v) | u, v \in V(Q_n), d_H(u, v) = 1\}, |E(Q_n)| = n2^{n-1}$ 1111 111 011 1014 1101 110 101 $0011 - 0101$ at Tr 11 01 110 1010 100 10 0Q 010 100 0004 คกาศ .000 0 ωm 10.A Figure: Hypercubes Q_1 , Q_2 , Q_3 and Q_4 .

Fibonacci cubes (Hsu, 1993)

• The *n* dimensional Fibonacci cube Γ_n is obtained by removing vertices in that have two consecutive 1s in its binary labeling.

$$
V(\Gamma_n) = \{b_1b_2...b_n|b_i \in \{0,1\}, b_ib_{i+1} = 0\}
$$

$$
E(\Gamma_n) = \{(u, v)|u, v \in V(\Gamma_n), d_H(u, v) = 1\}
$$

Fibonacci cubes

- $|V(\Gamma_n)| = F_{n+2}$ • $|E(\Gamma_n)| = \frac{nF_{n+1} + 2(n+1)F_n}{5}$
-
- $\Gamma_n = 0$ $\Gamma_{n-1} \oplus 10$ Γ_{n-2} , $n > 2$

4 **D F**

化重新分重新

э

 298

Lucas cubes (Munarini et al., 1999)

• The Lucas cube
$$
\Lambda_n
$$
 is the graph with
\n
$$
V(\Lambda_n) = \{b_1b_2...b_n | b_i \in \{0, 1\}, b_i b_{i+1} = 0, b_1 b_n = 0\}
$$
\n
$$
E(\Lambda_n) = \{(u, v) | u, v \in V(\Lambda_n), d_H(u, v) = 1\}
$$

Lucas cubes (Munarini et al., 1999)

- The Lucas cube Λ_n is the graph with $V(\Lambda_n) = \{b_1b_2...b_n|b_i \in \{0,1\}, b_ib_{i+1} = 0, b_1b_n = 0\}$ $E(\Lambda_n) = \{(u, v) | u, v \in V(\Lambda_n), d_H(u, v) = 1\}$
- $|V(\Lambda_n)| = L_n$
- \bullet $|E(\Lambda_n)| = nF_{n-1}$
- $\bullet \ \Lambda_n = 0$ Γ_{n−1} ⊕ 10Γ_{n−3}0, $n > 3$

8 / 24

• A Pell string is a word over the alphabet $T = \{0, 1, 2\}$ such that there are no runs of 2s of odd length. Equivalently, a Pell string is a word over the alphabet $\mathcal{T}^{'}=\{0,1,22\}.$

- • A Pell string is a word over the alphabet $T = \{0, 1, 2\}$ such that there are no runs of 2s of odd length. Equivalently, a Pell string is a word over the alphabet $\mathcal{T}^{'}=\{0,1,22\}.$
- Let P_n denote the set of Pell strings of length n. Then $\mathcal{P}_0 = {\varepsilon}, \mathcal{P}_1 = \{0, 1\}$ and for $n > 0$,

$$
\mathcal{P}_{n+2} = 0\mathcal{P}_{n+1} + 1\mathcal{P}_{n+1} + 22\mathcal{P}_n
$$

Thus $|\mathcal{P}_n| = P_{n+1}$, where P_n is the nth Pell number defined by

$$
P_n = 2P_{n-1} + P_{n-2}, \quad n \ge 2
$$

with the initial conditions $P_0 = 0$ and $P_1 = 1$.

[T](#page-13-0)[he](#page-10-0) [5](#page-11-0)[th](#page-12-0) [C](#page-13-0)[ro](#page-10-0)[a](#page-11-0)[tia](#page-14-0)[n](#page-15-0) [C](#page-10-0)[o](#page-11-0)[mb](#page-14-0)[in](#page-15-0)[ator](#page-0-0)[ial D](#page-30-0)ays, Zagreb

Pell Graphs

• The Pell graph Π_n has $V(\Pi_n) = \mathcal{P}_n$ and adjacency: $0 \leftrightarrow 1$ or $11 \leftrightarrow 22$

 T sight combin[a](#page-11-0)t[o](#page-11-0)rial T or T

Pell Graphs

• $\Pi_n = 0\Pi_{n-1} \oplus 1\Pi_{n-1} \oplus 22\Pi_{n-2}, n \ge 2$

化重新分量系

4 0 8

 298

э

Generalized Pell Graphs (Klavzar et al., 2023)

• For $k \geq 2$, the generalized Pell string is a string over the alphabet $\{0, 1, ..., k-1, kk\}$ such that each run of k is even length. When $k = 2$, we get the Pell string.

Generalized Pell Graphs (Klavzar et al., 2023)

- For $k \geq 2$, the generalized Pell string is a string over the alphabet $\{0, 1, ..., k-1, kk\}$ such that each run of k is even length. When $k = 2$, we get the Pell string.
- Let $\mathcal{F}_{n,k}$ denote the set of *generalized Pell strings* of length *n*. Then Clearly, $\mathcal{F}_{0,k} = \{\varepsilon\}$ and $\mathcal{F}_{1,k} = \{0, 1, ..., k-1\}$, while for $n \geq 2$ we have

$$
\mathcal{F}_{n,k} = 0\mathcal{F}_{n-1,k} + 1\mathcal{F}_{n-1,k} + \ldots + (k-1)\mathcal{F}_{n-1,k} + kk\mathcal{F}_{n-2,k}.
$$

 $|\mathcal{F}_{n,k}| = F_{n+1,k}$ where $F_{n,k}$ is the nth k-Fibonacci number defined by

$$
F_{n,k} = kF_{n-1,k} + F_{n-2,k}, \quad n \ge 2
$$

with the initial conditions $F_{0,k} = 0$ and $F_{1,k} = 1$.

[T](#page-17-0)[he](#page-14-0) [5](#page-15-0)[th](#page-16-0) [C](#page-14-0)[ro](#page-14-0)[a](#page-15-0)[tian](#page-30-0) C[o](#page-15-0)[mbin](#page-30-0)[ator](#page-0-0)[ial D](#page-30-0)ays, Days, 2014

• The Generalized Pell graph $\Pi_{n,k}$ has $V(\Pi_{n,k}) = \mathcal{F}_{n,k}$ and adjacency: $i \leftrightarrow i + 1$ for $i \in \{0, 1, ..., k - 2\}$ or $(k - 1)(k - 1) \leftrightarrow kk$

Figure: Generalized Pell graphs $\Pi_{n,3}$ for $n \in \{0,1,2\}$.

Generalized Pell Graphs

Figure: Generalized Pell graph $\Pi_{3,3}$

• The fundamental decomposition of the Generalized Pell graph $\Pi_{n,k}$ is $\Pi_{n,k} = 0\Pi_{n-1,k} \oplus 1\Pi_{n-1}, k \oplus ... \oplus (k-1)\Pi_{n-1,k} \oplus kk\Pi_{n-2,k}$ with $\Pi_{0,k} = K_1$ and $\Pi_{1,k}$ is the path on k vertices.

[T](#page-20-0)[he](#page-18-0) [5th](#page-19-0) [C](#page-20-0)[ro](#page-14-0)[a](#page-15-0)[tian](#page-30-0) [C](#page-14-0)[o](#page-15-0)[mbin](#page-30-0)[ator](#page-0-0)[ial D](#page-30-0)ays, Zagreb

Generalized Pell Graphs

• From the fundamental decomposition of $\Pi_{n,k}$, the edges of $\Pi_{n,k}$ are of the following four types: (i) edges from k copies of $\Pi_{n-1,k}$ (ii) edges from $\prod_{n=2,k}$ (iii) the link edges between the vertices in the k copies of $\Pi_{n-1,k}$ (iv) the link edges between the vertices in $kk\Pi_{n-2,k}$ and $(k-1)(k-1)\prod_{n=2,k}$

- **•** From the fundamental decomposition of $\Pi_{n,k}$, the edges of $\Pi_{n,k}$ are of the following four types: (i) edges from k copies of $\Pi_{n-1,k}$ (ii) edges from $\prod_{n=2,k}$ (iii) the link edges between the vertices in the k copies of $\Pi_{n-1,k}$ (iv) the link edges between the vertices in $kk\Pi_{n-2,k}$ and $(k-1)(k-1)\prod_{n=2,k}$
- For $n > 2$,

 $|E(\Pi_{n,k})| = k|E(\Pi_{n-1,k})| + |E(\Pi_{n-2,k})| + (k-1)F_{n,k} + F_{n-1,k}$

with $|E(\Pi_{0,k})| = 0$ and $|E(\Pi_{1,k})| = k - 1$.

[T](#page-23-0)[he](#page-20-0) [5](#page-21-0)[th](#page-22-0) [C](#page-23-0)[ro](#page-14-0)[a](#page-15-0)[tian](#page-30-0) [C](#page-14-0)[o](#page-15-0)[mbin](#page-30-0)[ator](#page-0-0)[ial D](#page-30-0)ays, Zagreb

• The generating function of the number of edges in $\Pi_{n,k}$ is

$$
\sum_{n\geq 0} |E(\Pi_{n,k})|t^n = \frac{(k-1+t)t}{(1-kt-t^2)^2}
$$

$$
|E(\Pi_{n,k})| = \sum_{i=0}^n F_{i,k}(F_{n-i+2,k} - F_{n-i+1,k})
$$

Elif Tan (Ankara University)

 \bullet

4 **D**

э

4 G K 4 G K

 298

Cube Polynomial

• The cube polynomial of a graph G, denoted by $C_G(x)$, is the counting polynomial defined by the generating function

$$
C_G(x) = \sum_{i \geq 0} c_i(G)x^i
$$

where $c_i(G)$ counts the number of induced *i*-cubes in G. Clearly, $c_0(G) = |V(G)|$, $c_1(G) = |E(G)|$.

• The cube polynomial of a graph G, denoted by $C_G(x)$, is the counting polynomial defined by the generating function

$$
C_G(x) = \sum_{i \geq 0} c_i(G)x^i
$$

where $c_i(G)$ counts the number of induced *i*-cubes in G. Clearly, $c_0(G) = |V(G)|$, $c_1(G) = |E(G)|$.

• The first few cube polynomials of $\Pi_{n,k}$ are listed below:

\n- \n
$$
C_{\Pi_{0,k}}(x) = 1
$$
\n
\n- \n
$$
C_{\Pi_{1,k}}(x) = k + (k-1)x
$$
\n
\n- \n
$$
C_{\Pi_{2,k}}(x) = k^2 + 1 + (2k^2 - 2k + 1)x + (k^2 - 2k + 1)x^2
$$
\n
\n- \n
$$
C_{\Pi_{3,k}}(x) = k^3 + 2k + (3k^3 - 3k^2 + 4k - 2)x + (3k^3 - 6k^2 + 5k - 2)x^2 + (k^3 - 3k^2 + 3k - 1)x^3
$$
\n
\n

• The cube polynomials $C_{\Pi_{n,k}}(x)$ satisfy the recurrence relation

$$
C_{\Pi_{n,k}}(x) = (k + (k-1)x)C_{\Pi_{n-1,k}}(x) + (1+x)C_{\Pi_{n-2,k}}(x), n \ge 2
$$

with the initial values $C_{0,k}(x) = 1$ and $C_{\Pi_{1,k}}(x) = k + (k-1)x$.

$$
\bullet
$$

$$
C_{\Pi_{n,k}}(x) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} {n-i \choose i} (k + (k-1)x)^{n-2i} (1+x)^i.
$$

化重新分量率

э

 QQ

Some graph theoretic properties

- The graph $\Pi_{n,k}$ has a Hamiltonian path.
- \bullet Π_{n,k} \subseteq Γ_{(2k-2)n-1}
- e eccentricity(u) = max $d(u, v)$ for all $v \in V(\Pi_{n,k})$ $\text{diam}(\Pi_{n,k}) = nk - \lfloor \frac{n}{2} \rfloor$ rad $(\Pi_{n,k})=\lfloor\frac{nk}{2}\rfloor$ $rac{2k}{2}$
- The center consists of vertices whose eccentricity equals the radius.

$$
|C(\Pi_{n,k})| = \begin{cases} F_{n+2}; & k \text{ even}, \\ (n+4)2^{\frac{n}{2}-2}; & k \text{ odd and } n \text{ even}, \\ 2^{\frac{n-1}{2}}; & k \text{ odd and } n \text{ odd}. \end{cases}
$$

Some graph theoretic properties

Elif Tan (Ankara University)

 $22/24$

ă

 298

· Iršič V., Klavžar S., Tan E. Generalized Pell graphs, Turkish Journal of Mathematics, 47(7), 1955-1973, 2023.

 \rightarrow ÷ QQ

э

Thank you for your attention! Teşekkür ederim!

The 22nd International Fibonacci Conference will be held in **Istanbul in July 2026!**

4 0 8

э

→ 4 E >

 QQ