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Fibonacci and Lucas numbers

The Fibonacci numbers are defined by the recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2

with the initial conditions F0 = 0 and F1 = 1.
The Lucas numbers satisfy the same recurrence relation as Fibonacci
numbers

Ln = Ln−1 + Ln−2, n ≥ 2

but begin with the initial conditions L0 = 2 and L1 = 1.
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Combinatorial interpretation (Benjamin and Quinn, 2003)

Fn+1 counts the number of tilings of an n-board using squares and
dominoes.

1 2 ... n
→ (1 × n)-board

s → (1 × 1)-square

d → (1 × 2)-domino

Ln counts the number of circular tilings of an n-board using squares
and dominoes.
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Hypercubes

The hypercube graph Qn of dimension n is one of the most famous
models for interconnection networks.
V (Qn) = {b1b2...bn|bi ∈ {0, 1}}, |V (Qn)| = 2n

E (Qn) = {(u, v)|u, v ∈ V (Qn), dH(u, v) = 1},|E (Qn)| = n2n−1
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Fibonacci cubes (Hsu, 1993)

The n dimensional Fibonacci cube Γn is obtained by removing vertices
in that have two consecutive 1s in its binary labeling.

V (Γn) = {b1b2...bn|bi ∈ {0, 1}, bibi+1 = 0}
E (Γn) = {(u, v)|u, v ∈ V (Γn), dH(u, v) = 1}
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Fibonacci cubes

|V (Γn)| = Fn+2

|E (Γn)| = nFn+1+2(n+1)Fn

5

Γn = 0Γn−1 ⊕ 10Γn−2, n ≥ 2

0Γn−1 00Γn−2

10Γn−2

. . .

The fundamental decomposition of Γn
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Lucas cubes (Munarini et al., 1999)

The Lucas cube Λn is the graph with
V (Λn) = {b1b2...bn|bi ∈ {0, 1}, bibi+1 = 0, b1bn = 0}
E (Λn) = {(u, v)|u, v ∈ V (Λn), dH(u, v) = 1}

|V (Λn)| = Ln

|E (Λn)| = nFn−1

Λn = 0Γn−1 ⊕ 10Γn−30, n ≥ 3
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Pell Graphs (Munarini, 2019)

A Pell string is a word over the alphabet T = {0, 1, 2} such that
there are no runs of 2s of odd length. Equivalently, a Pell string is a
word over the alphabet T

′
= {0, 1, 22}.

Let Pn denote the set of Pell strings of length n. Then
P0 = {ε},P1 = {0, 1} and for n ≥ 0,

Pn+2 = 0Pn+1 + 1Pn+1 + 22Pn

Thus |Pn| = Pn+1, where Pn is the nth Pell number defined by

Pn = 2Pn−1 + Pn−2, n ≥ 2

with the initial conditions P0 = 0 and P1 = 1.
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Pell Graphs

The Pell graph Πn has V (Πn) = Pn and
adjacency: 0 ↔ 1 or 11 ↔ 22

ε

Π0

0

1

Π1

00

01

10

11 22

Π2

000

001

010

011
022

100

101

110

111
122

220

221

Π3

Figure: Pell graphs Πn for n ∈ {0, 1, 2, 3}.Elif Tan (Ankara University) Pell graphs
The 5th Croatian Combinatorial Days, Zagreb

10 / 24



Pell Graphs

Πn = 0Πn−1 ⊕ 1Πn−1 ⊕ 22Πn−2, n ≥ 2

0Πn−1

1Πn−1 11Πn−2

22Πn−2

• • •

. . .

The fundamental decomposition of Πn
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Generalized Pell Graphs (Klavzar et al., 2023)

For k ≥ 2, the generalized Pell string is a string over the alphabet
{0, 1, ..., k − 1, kk} such that each run of k is even length.
When k = 2, we get the Pell string .

Let Fn,k denote the set of generalized Pell strings of length n. Then
Clearly, F0,k = {ε} and F1,k = {0, 1, ..., k − 1}, while for n ≥ 2 we
have

Fn,k = 0Fn−1,k + 1Fn−1,k + ...+ (k − 1)Fn−1,k + kkFn−2,k .

|Fn,k | = Fn+1,k where Fn,k is the nth k-Fibonacci number defined by

Fn,k = kFn−1,k + Fn−2,k , n ≥ 2

with the initial conditions F0,k = 0 and F1,k = 1.
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Generalized Pell Graphs

The Generalized Pell graph Πn,k has V (Πn,k) = Fn,k and
adjacency: i ↔ i + 1 for i ∈ {0, 1, ..., k − 2} or (k − 1)(k − 1) ↔ kk

ε

Π0,3
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22 33

Π2,3

Figure: Generalized Pell graphs Πn,3 for n ∈ {0, 1, 2}.
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Generalized Pell Graphs
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Figure: Generalized Pell graph Π3,3
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Generalized Pell Graphs

The fundamental decomposition of the Generalized Pell graph Πn,k is

Πn,k = 0Πn−1,k ⊕ 1Πn−1, k ⊕ ...⊕ (k − 1)Πn−1,k ⊕ kkΠn−2,k

with Π0,k = K1 and Π1,k is the path on k vertices.
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Generalized Pell Graphs

0Πn−1,k

1Πn−1,k

(k − 1)Πn−1,k (k − 1)(k − 1)Πn−2,k

kkΠn−2,k

• • •

• • •...
...

...
...

. . .

Figure: The fundamental decomposition of Πn,k .
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The number of edges

From the fundamental decomposition of Πn,k , the edges of Πn,k are
of the following four types:
(i) edges from k copies of Πn−1,k
(ii) edges from Πn−2,k
(iii) the link edges between the vertices in the k copies of Πn−1,k
(iv) the link edges between the vertices in kkΠn−2,k and
(k − 1)(k − 1)Πn−2,k

For n ≥ 2,

|E (Πn,k)| = k |E (Πn−1,k)|+ |E (Πn−2,k)|+ (k − 1)Fn,k + Fn−1,k

with |E (Π0,k)| = 0 and |E (Π1,k)| = k − 1.
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The number of edges

The generating function of the number of edges in Πn,k is∑
n≥0

|E (Πn,k)|tn =
(k − 1 + t)t

(1 − kt − t2)2

|E (Πn,k)| =
n∑

i=0

Fi ,k(Fn−i+2,k − Fn−i+1,k)
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Cube Polynomial

The cube polynomial of a graph G , denoted by CG (x), is the counting
polynomial defined by the generating function

CG (x) =
∑
i≥0

ci (G )x i

where ci (G ) counts the number of induced i-cubes in G . Clearly,
c0(G ) = |V (G )|, c1(G ) = |E (G )|.

The first few cube polynomials of Πn,k are listed below:
CΠ0,k (x) = 1
CΠ1,k (x) = k + (k − 1)x
CΠ2,k (x) = k2 + 1 + (2k2 − 2k + 1)x + (k2 − 2k + 1)x2

CΠ3,k (x) = k3 + 2k + (3k3 − 3k2 + 4k − 2)x + (3k3 − 6k2 + 5k − 2)x2

+(k3 − 3k2 + 3k − 1)x3
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Cube Polynomial

The cube polynomials CΠn,k
(x) satisfy the recurrence relation

CΠn,k
(x) = (k + (k − 1)x)CΠn−1,k (x) + (1 + x)CΠn−2,k (x), n ≥ 2

with the initial values C0,k(x) = 1 and CΠ1,k (x) = k + (k − 1)x .

CΠn,k
(x) =

⌊ n
2⌋∑

i=0

(
n − i

i

)
(k + (k − 1) x)n−2i (1 + x)i .
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Some graph theoretic properties

The graph Πn,k has a Hamiltonian path.
Πn,k⊆ Γ(2k−2)n−1

eccentricity(u) = max d(u, v) for all v∈V(Πn,k)
diam(Πn,k) = nk − ⌊n2⌋
rad(Πn,k) = ⌊nk2 ⌋
The center consists of vertices whose eccentricity equals the radius.

|C (Πn,k)| =


Fn+2; k even,
(n + 4)2

n
2−2; k odd and n even,

2
n−1

2 ; k odd and n odd.
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Some graph theoretic properties
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Thank You

Thank you for your attention!
Teşekkür ederim!

The 22nd International Fibonacci Conference will be held in
Istanbul in July 2026!
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