Character type constructions and 3-dimensional Hadamard cubes*

Kristijan Tabak

(joint work with Mario Osvin Pavčević and Vedran Krčadinac)

Rochester Institute of Technology, Zagreb campus

5th Croatian Combinatorial Days 19 - 20 Sep 2024, Zagreb, Croatia

* This work was fully supported by the Croatian Science Foundation under the project 9752.

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, ..., v\}$. Let $H : [v]^3 \to \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

• = •

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, ..., v\}$. Let $H : [v]^3 \to \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

$$\sum_{x,y\in[v]} H(x,y,z)H(x,y,w) = \sum_{x,y\in[v]} H(x,z,y)H(x,w,y) =$$

$$=\sum_{x,y\in[v]}H(z,x,y)H(w,x,y)=0,$$

イロト イヨト イヨト ・

э

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, ..., v\}$. Let $H : [v]^3 \to \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

$$\sum_{x,y\in[v]} H(x,y,z)H(x,y,w) = \sum_{x,y\in[v]} H(x,z,y)H(x,w,y) =$$

$$=\sum_{x,y\in[v]}H(z,x,y)H(w,x,y)=0,$$

H is called a 3-dimensional Hadamard cube of order v

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, ..., v\}$. Let $H : [v]^3 \to \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

$$\sum_{x,y\in[v]} H(x,y,z)H(x,y,w) = \sum_{x,y\in[v]} H(x,z,y)H(x,w,y) =$$

$$=\sum_{x,y\in[v]}H(z,x,y)H(w,x,y)=0,$$

H is called a 3-dimensional Hadamard cube of order v

The class of all such cubes is denoted by $\mathcal{H}(v, 3)$.

Kristijan Tabak (RIT)

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, ..., v\}$. Let $H : [v]^3 \to \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

$$\sum_{x,y\in[v]} H(x,y,z)H(x,y,w) = \sum_{x,y\in[v]} H(x,z,y)H(x,w,y) =$$

$$=\sum_{x,y\in[v]}H(z,x,y)H(w,x,y)=0,$$

H is called a 3-dimensional Hadamard cube of order v

The class of all such cubes is denoted by $\mathcal{H}(v, 3)$.

Kristijan Tabak (RIT)

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

< 4[™] >

э

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

 $(x, y, z) \in G^3$ it holds $H(x, y, z) = \chi(\psi(x, y, z))$,

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

$$(x, y, z) \in G^3$$
 it holds $H(x, y, z) = \chi(\psi(x, y, z)),$

where $\psi: G^3 \to G$ and $\chi: G \to \{-1, 1\}$ nontrivial character.

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

$$(x,y,z) \in G^3$$
 it holds $H(x,y,z) = \chi(\psi(x,y,z)),$

where $\psi: G^3 \to G$ and $\chi: G \to \{-1, 1\}$ nontrivial character.

We will show that this is necessary.

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

$$(x,y,z)\in G^3$$
 it holds $H(x,y,z)=\chi(\psi(x,y,z)),$

where $\psi: {\it G}^{3} \rightarrow {\it G}$ and $\chi: {\it G} \rightarrow \{-1,1\}$ nontrivial character.

We will show that this is necessary.

Or in order to construct such symmetry as an object $H \in Had(v, 3)$,

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

$$(x,y,z)\in G^3$$
 it holds $H(x,y,z)=\chi(\psi(x,y,z)),$

where $\psi: {\it G}^{3} \rightarrow {\it G}$ and $\chi: {\it G} \rightarrow \{-1,1\}$ nontrivial character.

We will show that this is necessary.

Or in order to construct such symmetry as an object $H \in Had(v, 3)$,

it is necessary to break symmetry and avoid constructions of a type $\chi\psi.$

Image: Image:

글▶ 글

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

э

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

Let
$$Y = \sum_{g \in G} a_g g \in \mathbb{Z}[G]$$
, and let $K \leq G$ is a subgroup of G ,

э

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

Let
$$Y = \sum_{g \in G} a_g g \in \mathbb{Z}[G]$$
, and let $K \leq G$ is a subgroup of G ,

then $YK = \sum_{g \in G} a_g g K \in \mathbb{Z}[G/K]$, where G/K is a factor group and gK = K when $g \in K$.

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

Let
$$Y = \sum_{g \in G} a_g g \in \mathbb{Z}[G]$$
, and let $K \leq G$ is a subgroup of G ,

then $YK = \sum_{g \in G} a_g g K \in \mathbb{Z}[G/K]$, where G/K is a factor group and gK = K when $g \in K$.

Let $\chi: \mathcal{G} \to \{-1,1\}$ be a nontrivial character and let $\mathcal{K} = \mathcal{K}er(\chi)$,

イロト イ団ト イヨト イヨト 二日

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

Let
$$Y = \sum_{g \in G} a_g g \in \mathbb{Z}[G]$$
, and let $K \leq G$ is a subgroup of G ,

then $YK = \sum_{g \in G} a_g g K \in \mathbb{Z}[G/K]$, where G/K is a factor group and gK = K when $g \in K$.

Let $\chi: \mathcal{G} \to \{-1,1\}$ be a nontrivial character and let $\mathcal{K} = \mathcal{K}er(\chi)$,

then |G| = 2|K| and $G/K = \langle aK \rangle \cong \mathbb{Z}_2$ for some $a \in G$.

A character χ act on $\mathbb{Z}[G]$ in a natural way, i.e. $\chi\left(\sum a_g g\right) = \sum a_g \chi(g)$.

Image: A matrix

< E > E

A character χ act on $\mathbb{Z}[G]$ in a natural way, i.e. $\chi\left(\sum a_g g\right) = \sum a_g \chi(g)$.

 $\psi: G^3 \rightarrow G, i \in [3] \text{ and } w \in G.$

Image: A matrix and a matrix

→ 3 → 3

A character χ act on $\mathbb{Z}[G]$ in a natural way, i.e. $\chi\left(\sum a_g g\right) = \sum a_g \chi(g)$.

 $\psi: G^3 \rightarrow G, i \in [3] \text{ and } w \in G.$

We will denote by $\psi_{iw}: G^2 \to G$ a restriction of a function ψ such that an *i*-th coordinate is *w*, while two others are some $x, y \in G$, i.e.

A character χ act on $\mathbb{Z}[G]$ in a natural way, i.e. $\chi\left(\sum a_g g\right) = \sum a_g \chi(g)$.

 $\psi: G^3 \rightarrow G, i \in [3] \text{ and } w \in G.$

We will denote by $\psi_{iw}: G^2 \to G$ a restriction of a function ψ such that an *i*-th coordinate is *w*, while two others are some $x, y \in G$, i.e.

 $\psi_{2w}(x,y) = \psi(x,w,y) \text{ and } \psi_{1w}(x,y) = \psi(w,x,y).$

A character χ act on $\mathbb{Z}[G]$ in a natural way, i.e. $\chi\left(\sum a_g g\right) = \sum a_g \chi(g)$.

 $\psi: G^3 \rightarrow G, i \in [3] \text{ and } w \in G.$

We will denote by $\psi_{iw}: G^2 \to G$ a restriction of a function ψ such that an *i*-th coordinate is *w*, while two others are some $x, y \in G$, i.e.

$$\psi_{2w}(x,y) = \psi(x,w,y)$$
 and $\psi_{1w}(x,y) = \psi(w,x,y)$.

Let $z, w \in G$ and $i \in [3]$.

5/13

A character χ act on $\mathbb{Z}[G]$ in a natural way, i.e. $\chi\left(\sum a_g g\right) = \sum a_g \chi(g)$.

 $\psi: G^3 \rightarrow G, i \in [3] \text{ and } w \in G.$

We will denote by $\psi_{iw}: G^2 \to G$ a restriction of a function ψ such that an *i*-th coordinate is *w*, while two others are some $x, y \in G$, i.e.

$$\psi_{2w}(x,y) = \psi(x,w,y) \text{ and } \psi_{1w}(x,y) = \psi(w,x,y).$$

Let $z, w \in G$ and $i \in [3]$.

The sum $\sum_{(x,y)\in G^2}\psi_{iz}(x,y)\psi_{iw}(x,y)$ shall be denoted by

A character χ act on $\mathbb{Z}[G]$ in a natural way, i.e. $\chi\left(\sum a_g g\right) = \sum a_g \chi(g)$.

 $\psi: G^3 \rightarrow G, i \in [3] \text{ and } w \in G.$

We will denote by $\psi_{iw}: G^2 \to G$ a restriction of a function ψ such that an *i*-th coordinate is *w*, while two others are some $x, y \in G$, i.e.

$$\psi_{2w}(x,y) = \psi(x,w,y)$$
 and $\psi_{1w}(x,y) = \psi(w,x,y).$

Let $z, w \in G$ and $i \in [3]$.

The sum $\sum_{(x,y)\in G^2}\psi_{iz}(x,y)\psi_{iw}(x,y)$ shall be denoted by

 $\psi_{iz}(G^2)\psi_{iw}(G^2).$

Kristijan Tabak (RIT)

イロト イヨト イヨト --

3

if in a group ring $\mathbb{Z}[G/K]$ the following holds:

イロト 不得 トイヨト イヨト

æ

if in a group ring $\mathbb{Z}[G/K]$ the following holds:

$$\psi_{iz}(G^2)\psi_{iw}(G^2)K=2n^2(1+a)K,$$

イロト 不得 トイヨト イヨト

æ

if in a group ring $\mathbb{Z}[G/K]$ the following holds:

$$\psi_{iz}(G^2)\psi_{iw}(G^2)K=2n^2(1+a)K,$$

for all distinct $z, w \in G$ and $i \in [3]$.

э

6/13

if in a group ring $\mathbb{Z}[G/K]$ the following holds:

$$\psi_{iz}(G^2)\psi_{iw}(G^2)K=2n^2(1+a)K,$$

for all distinct $z, w \in G$ and $i \in [3]$.

The set of all Hadamard maps on a group G is denoted by $\mathcal{H}ad(G)$.

Main Proposition and *character type* subset of Had(|G|, 3)

Main technical (and easy to prove) proposition...

Main technical (and easy to prove) proposition...

Proposition.

Let G be an abelian group of even order and let $\chi : G \to \{-1, 1\}$ be a nontrivial character on G with kernel K and $G/K = \langle aK \rangle$. Let $Y \in \mathbb{Z}[G]$. Then $\chi(Y) = 0$ if and only if there is $\mu \in \mathbb{Z}$ such that $YK = \mu(1 + a)K$. Main technical (and easy to prove) proposition...

Proposition.

Let G be an abelian group of even order and let $\chi : G \to \{-1, 1\}$ be a nontrivial character on G with kernel K and $G/K = \langle aK \rangle$. Let $Y \in \mathbb{Z}[G]$. Then $\chi(Y) = 0$ if and only if there is $\mu \in \mathbb{Z}$ such that $YK = \mu(1 + a)K$.

Definition.

A character type subset of $\mathcal{H}ad(|G|, 3)$ is a collection of maps from $\mathcal{H}ad(|G|, 3)$ which have form $\chi\psi$, where χ is a nontrivial character on G with an image $\{-1, 1\}$ and ψ is a function from G^3 to G.

・ロト ・回ト ・ヨト ・ヨト

Main technical (and easy to prove) proposition...

Proposition.

Let G be an abelian group of even order and let $\chi : G \to \{-1, 1\}$ be a nontrivial character on G with kernel K and $G/K = \langle aK \rangle$. Let $Y \in \mathbb{Z}[G]$. Then $\chi(Y) = 0$ if and only if there is $\mu \in \mathbb{Z}$ such that $YK = \mu(1 + a)K$.

Definition.

A character type subset of $\mathcal{H}ad(|G|, 3)$ is a collection of maps from $\mathcal{H}ad(|G|, 3)$ which have form $\chi\psi$, where χ is a nontrivial character on G with an image $\{-1, 1\}$ and ψ is a function from G^3 to G.

・ロト ・回ト ・ヨト ・ヨト

Hadamard map \Leftrightarrow character type subset of $\mathcal{H}ad(|G|, 3)$

э

Theorem. $(\mathcal{H}ad(|G|,3) \Leftrightarrow \text{character type subset})$

Let G be an abelian group of order 2n and let K < G be a subgroup of index 2. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if $\chi\psi$ is from character type subset of $\mathcal{H}ad(2n, 3)$, where χ be a character on G with a kernel K.

Theorem. $(\mathcal{H}ad(|G|,3) \Leftrightarrow \text{character type subset})$

Let G be an abelian group of order 2n and let K < G be a subgroup of index 2. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if $\chi\psi$ is from character type subset of $\mathcal{H}ad(2n,3)$, where χ be a character on G with a kernel K.

For $\psi : G^2 \to G$ we define a *distribution vector* $\lambda_{\psi} \in \mathbb{F}_2^{|G^2|}$ of a function ψ (modulo *K*) as

Theorem. $(\mathcal{H}ad(|G|,3) \Leftrightarrow \text{character type subset})$

Let G be an abelian group of order 2n and let K < G be a subgroup of index 2. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if $\chi\psi$ is from character type subset of $\mathcal{H}ad(2n,3)$, where χ be a character on G with a kernel K.

For $\psi : G^2 \to G$ we define a *distribution vector* $\lambda_{\psi} \in \mathbb{F}_2^{|G^2|}$ of a function ψ (modulo K) as

 $\lambda_\psi = (\lambda_\psi(g))_{g\in G^2}$,

Theorem. $(\mathcal{H}ad(|G|,3) \Leftrightarrow \text{character type subset})$

Let G be an abelian group of order 2n and let K < G be a subgroup of index 2. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if $\chi\psi$ is from character type subset of $\mathcal{H}ad(2n,3)$, where χ be a character on G with a kernel K.

For $\psi : G^2 \to G$ we define a *distribution vector* $\lambda_{\psi} \in \mathbb{F}_2^{|G^2|}$ of a function ψ (modulo K) as

 $\lambda_\psi = (\lambda_\psi(g))_{g \in G^2}$,

where $\lambda_{\psi}(g) = 1$ if and only if $\psi(g) \not\in K$

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

э

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

For $(v_1, \ldots, v_{4n^2}) \in V$ we define a norm of v as $|v| = |\{i \in [4n^2] \mid v_i = 1.\}|$

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

For
$$(v_1, \ldots, v_{4n^2}) \in V$$
 we define a norm of v as $|v| = |\{i \in [4n^2] \mid v_i = 1.\}|$

A set of vectors $\{v_i \mid i \in [2n]\} \subseteq V$ is called a $(4n^2, 2n^2, 2n)$ -net if $|v_i + v_j| = 2n^2$ for all distinct *i* and *j*.

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

For
$$(v_1, \ldots, v_{4n^2}) \in V$$
 we define a norm of v as $|v| = |\{i \in [4n^2] \mid v_i = 1.\}|$

A set of vectors $\{v_i \mid i \in [2n]\} \subseteq V$ is called a $(4n^2, 2n^2, 2n)$ -net if $|v_i + v_j| = 2n^2$ for all distinct *i* and *j*.

Proposition.

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$ and $\psi : G^2 \to G$. Then $\psi(G^2) = \frac{1}{2}|G^2|(1+a)K$ if and only if a distribution vector λ_{ψ} has norm equal to $\frac{1}{2}|G^2|$.

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

For
$$(v_1, \ldots, v_{4n^2}) \in V$$
 we define a norm of v as $|v| = |\{i \in [4n^2] \mid v_i = 1.\}|$

A set of vectors $\{v_i \mid i \in [2n]\} \subseteq V$ is called a $(4n^2, 2n^2, 2n)$ -net if $|v_i + v_j| = 2n^2$ for all distinct *i* and *j*.

Proposition.

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$ and $\psi : G^2 \to G$. Then $\psi(G^2) = \frac{1}{2}|G^2|(1+a)K$ if and only if a distribution vector λ_{ψ} has norm equal to $\frac{1}{2}|G^2|$.

Kristijan Tabak (RIT)

æ

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Let $\psi_i : G^2 \to G$, i = 1, 2 where λ_{ψ_i} are respective distribution vectors. Then the following is equivalent

•
$$\psi_1\psi_2(G^2)K = \frac{1}{2}|G^2|(1+a)K,$$

• $|\lambda_{\psi_1} + \lambda_{\psi_2}| = \frac{1}{2}|G^2|,$
where $\psi_1\psi_2(G^2) = \sum_{g \in G^2} \psi_1(g)\psi_2(g).$

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Let $\psi_i : G^2 \to G$, i = 1, 2 where λ_{ψ_i} are respective distribution vectors. Then the following is equivalent

•
$$\psi_1\psi_2(G^2)K = \frac{1}{2}|G^2|(1+a)K,$$

• $|\lambda_{\psi_1} + \lambda_{\psi_2}| = \frac{1}{2}|G^2|,$
where $\psi_1\psi_2(G^2) = \sum_{g \in G^2} \psi_1(g)\psi_2(g).$

Kristijan Tabak (RIT)

æ

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz} \mid z \in G\}$ is a $(4n^2, 2n^2, 2n)$ -net, where $\psi_{iz}(x, y) = a^{\varphi_{iz}(x, y)}k_{iz}(x, y), i \in [3], k_{iz}(x, y) \in K$ for some order of G^2 .

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz} \mid z \in G\}$ is a $(4n^2, 2n^2, 2n)$ -net, where $\psi_{iz}(x, y) = a^{\varphi_{iz}(x, y)}k_{iz}(x, y), i \in [3], k_{iz}(x, y) \in K$ for some order of G^2 .

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz} \mid z \in G\}$ is a $(4n^2, 2n^2, 2n)$ -net, where $\psi_{iz}(x, y) = a^{\varphi_{iz}(x, y)}k_{iz}(x, y), i \in [3], k_{iz}(x, y) \in K$ for some order of G^2 .

$$\varphi_{1x_0}=(\varphi(x_0,y,z))_{(y,z)\in G^2}\in \mathbb{F}_2^{4n^2},$$

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz} \mid z \in G\}$ is a $(4n^2, 2n^2, 2n)$ -net, where $\psi_{iz}(x, y) = a^{\varphi_{iz}(x, y)}k_{iz}(x, y), i \in [3], k_{iz}(x, y) \in K$ for some order of G^2 .

$$\varphi_{1x_0}=(\varphi(x_0,y,z))_{(y,z)\in G^2}\in \mathbb{F}_2^{4n^2},$$

$$\varphi_{2y_0}=(\varphi(x,y_0,z))_{(x,z)\in G^2}\in \mathbb{F}_2^{4n^2},$$

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz} \mid z \in G\}$ is a $(4n^2, 2n^2, 2n)$ -net, where $\psi_{iz}(x, y) = a^{\varphi_{iz}(x, y)}k_{iz}(x, y), i \in [3], k_{iz}(x, y) \in K$ for some order of G^2 .

$$\varphi_{1x_0}=(\varphi(x_0,y,z))_{(y,z)\in G^2}\in \mathbb{F}_2^{4n^2},$$

$$\varphi_{2y_0}=(\varphi(x,y_0,z))_{(x,z)\in G^2}\in \mathbb{F}_2^{4n^2},$$

$$\varphi_{3z_0} = (\varphi(x, y, z_0))_{(x, y) \in G^2} \in \mathbb{F}_2^{4n^2}$$

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz} \mid z \in G\}$ is a $(4n^2, 2n^2, 2n)$ -net, where $\psi_{iz}(x, y) = a^{\varphi_{iz}(x, y)}k_{iz}(x, y), i \in [3], k_{iz}(x, y) \in K$ for some order of G^2 .

$$\varphi_{1x_0}=(\varphi(x_0,y,z))_{(y,z)\in G^2}\in \mathbb{F}_2^{4n^2},$$

$$\varphi_{2y_0}=(\varphi(x,y_0,z))_{(x,z)\in G^2}\in \mathbb{F}_2^{4n^2},$$

$$\varphi_{3z_0} = (\varphi(x, y, z_0))_{(x, y) \in G^2} \in \mathbb{F}_2^{4n^2}$$

Kristijan Tabak (RIT)

æ

 $\{\varphi_{ig} \mid g \in G\}$ is a $(4n^2, 2n^2, 2n)$ -net for any $i \in [3]$.

$$\{arphi_{\textit{ig}} \mid { extbf{g}} \in { extbf{G}}\}$$
 is a $(4n^2, 2n^2, 2n)$ -net for any $i \in [3].$

Theorem. ($\mathcal{H}ad(G) \Leftrightarrow$ net cube)

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Let $\psi : G^3 \to G$ be a map where $\psi(x, y, z) = a^{\varphi(x, y, z)}k(x, y, z)$, such that $\varphi(x, y, z) \in \mathbb{F}_2$ and $k(x, y, z) \in K$ for $(x, y, z) \in G^3$. Then $\psi \in \mathcal{H}ad(G)$ if and only if φ is $(4n^2, 2n^2, 2n)$ -net cube.

$$\{arphi_{\textit{ig}} \mid { extbf{g}} \in { extbf{G}}\}$$
 is a $(4n^2, 2n^2, 2n)$ -net for any $i \in [3].$

Theorem. ($\mathcal{H}ad(G) \Leftrightarrow$ net cube)

Let G be an abelian group of even order and let K < G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Let $\psi : G^3 \to G$ be a map where $\psi(x, y, z) = a^{\varphi(x, y, z)}k(x, y, z)$, such that $\varphi(x, y, z) \in \mathbb{F}_2$ and $k(x, y, z) \in K$ for $(x, y, z) \in G^3$. Then $\psi \in \mathcal{H}ad(G)$ if and only if φ is $(4n^2, 2n^2, 2n)$ -net cube.

Final circle

Kristijan Tabak (RIT)

Ξ.

Theorem. (net cube \Leftrightarrow 3-dim Hadamard cube

The existence of a $(4n^2, 2n^2, 2n)$ -net cube on an abelian group *G* of order 2n is equivalent to the existence of a 3-dimensional Hadamard cube of order 2n.

Theorem. (net cube \Leftrightarrow 3-dim Hadamard cube

The existence of a $(4n^2, 2n^2, 2n)$ -net cube on an abelian group *G* of order 2n is equivalent to the existence of a 3-dimensional Hadamard cube of order 2n.

Thank you!

• • • • • • • •

2