Character type constructions and 3-dimensional Hadamard cubes^{*}

Kristijan Tabak

(joint work with Mario Osvin Pavˇcevi´c and Vedran Krˇcadinac)

Rochester Institute of Technology, Zagreb campus

5th Croatian Combinatorial Days 19 - 20 Sep 2024, Zagreb, Croatia

[⋆] This work was fully supported by the Croatian Science Foundation under the project 9752.

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, \ldots, v\}$. Let $H : [v]^3 \rightarrow \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

4 **D F**

 $\mathbf{A} \times \mathbf{B}$

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, \ldots, v\}$. Let $H : [v]^3 \rightarrow \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

$$
\sum_{x,y\in [v]} H(x,y,z)H(x,y,w) = \sum_{x,y\in [v]} H(x,z,y)H(x,w,y) =
$$

$$
=\sum_{x,y\in [v]}H(z,x,y)H(w,x,y)=0,
$$

イロト イ押 トイヨ トイヨ トー

э

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, \ldots, v\}$. Let $H : [v]^3 \rightarrow \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

$$
\sum_{x,y\in [v]} H(x,y,z)H(x,y,w) = \sum_{x,y\in [v]} H(x,z,y)H(x,w,y) =
$$

$$
= \sum_{x,y \in [v]} H(z,x,y)H(w,x,y) = 0,
$$

H is called a 3-dimensional Hadamard cube of order v

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, \ldots, v\}$. Let $H : [v]^3 \rightarrow \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

$$
\sum_{x,y \in [v]} H(x,y,z)H(x,y,w) = \sum_{x,y \in [v]} H(x,z,y)H(x,w,y) =
$$

$$
= \sum_{x,y \in [v]} H(z,x,y)H(w,x,y) = 0,
$$

H is called a 3-dimensional Hadamard cube of order v

The class of all such cubes is denoted by $\mathcal{H}(v, 3)$.

Let $v \in \mathbb{N}$ and $[v] = \{1, 2, \ldots, v\}$. Let $H : [v]^3 \rightarrow \{-1, 1\}$ be a function such that for any distinct $w, z \in [v]$ the following holds:

$$
\sum_{x,y \in [v]} H(x,y,z)H(x,y,w) = \sum_{x,y \in [v]} H(x,z,y)H(x,w,y) =
$$

$$
= \sum_{x,y \in [v]} H(z,x,y)H(w,x,y) = 0,
$$

H is called a 3-dimensional Hadamard cube of order v

The class of all such cubes is denoted by $\mathcal{H}(v, 3)$.

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

4 **D F** ∢母 Э× э

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

4 **D F**

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

 $(x, y, z) \in G^3$ it holds $H(x, y, z) = \chi(\psi(x, y, z)),$

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

 $(x, y, z) \in G^3$ it holds $H(x, y, z) = \chi(\psi(x, y, z)),$

where $\psi:G^3\to G$ and $\chi:G\to \{-1,1\}$ nontrivial character.

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

$$
(x, y, z) \in G3 \text{ it holds } H(x, y, z) = \chi(\psi(x, y, z)),
$$

where $\psi:G^3\to G$ and $\chi:G\to \{-1,1\}$ nontrivial character.

We will show that this is necessary.

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

$$
(x, y, z) \in G3 \text{ it holds } H(x, y, z) = \chi(\psi(x, y, z)),
$$

where $\psi:G^3\to G$ and $\chi:G\to \{-1,1\}$ nontrivial character.

We will show that this is necessary.

Or in order to construct such symmetry as an object $H \in \mathcal{H}$ ad(v, 3),

Most algebraic constructions for $H \in \mathcal{H}(v, 3)$ rely on an abelian group G of order v,

where H is piecewise defined and for some

$$
(x, y, z) \in G3 \text{ it holds } H(x, y, z) = \chi(\psi(x, y, z)),
$$

where $\psi:G^3\to G$ and $\chi:G\to \{-1,1\}$ nontrivial character.

We will show that this is necessary.

Or in order to construct such symmetry as an object $H \in \mathcal{H}$ ad(v, 3),

it is necessary to break symmetry and avoid con[str](#page-11-0)[uc](#page-13-0)[ti](#page-9-0)[o](#page-10-0)[n](#page-15-0)[s](#page-16-0) [of](#page-0-0) [a](#page-54-0) [ty](#page-0-0)[pe](#page-54-0) *[χ](#page-0-0)[ψ.](#page-54-0)*

 \rightarrow \equiv \rightarrow ٠

(ロ) (d)

重

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

4 0 F

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

Let
$$
Y = \sum_{g \in G} a_g g \in \mathbb{Z}[G]
$$
, and let $K \leq G$ is a subgroup of G ,

4 0 F

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

Let
$$
Y = \sum_{g \in G} a_g g \in \mathbb{Z}[G]
$$
, and let $K \leq G$ is a subgroup of G ,

then $\mathsf{Y} \mathsf{K} = \sum \mathsf{a}_\mathsf{g} \mathsf{g} \mathsf{K} \in \mathbb{Z}[\mathsf{G}/\mathsf{K}]$, where G/K is a factor group and g∈G $gK = K$ when $g \in K$.

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

Let
$$
Y = \sum_{g \in G} a_g g \in \mathbb{Z}[G]
$$
, and let $K \leq G$ is a subgroup of G ,

then $\mathsf{Y} \mathsf{K} = \sum \mathsf{a}_\mathsf{g} \mathsf{g} \mathsf{K} \in \mathbb{Z}[\mathsf{G}/\mathsf{K}]$, where G/K is a factor group and g∈G $gK = K$ when $g \in K$.

Let χ : $G \rightarrow \{-1, 1\}$ be a nontrivial character and let $K = Ker(\chi)$,

 χ is a nontrivial character on a group G, its kernel is denoted by $Ker(\chi)$.

Let
$$
Y = \sum_{g \in G} a_g g \in \mathbb{Z}[G]
$$
, and let $K \leq G$ is a subgroup of G ,

then $\mathsf{Y} \mathsf{K} = \sum \mathsf{a}_\mathsf{g} \mathsf{g} \mathsf{K} \in \mathbb{Z}[\mathsf{G}/\mathsf{K}]$, where G/K is a factor group and g∈G $gK = K$ when $g \in K$.

Let χ : $G \rightarrow \{-1, 1\}$ be a nontrivial character and let $K = Ker(\chi)$,

then $|G| = 2|K|$ and $G/K = \langle aK \rangle \cong \mathbb{Z}_2$ for some $a \in G$.

A character χ act on $\mathbb Z[G]$ in a natural way, i.e. $\ \chi\left(\sum a_{\mathcal{g}}g\right)=\sum a_{\mathcal{g}}\chi(\mathcal{g}).$

◂**◻▸ ◂◚▸**

A BOX 造

A character χ act on $\mathbb Z[G]$ in a natural way, i.e. $\ \chi\left(\sum a_{\mathcal{g}}g\right)=\sum a_{\mathcal{g}}\chi(\mathcal{g}).$

 $\psi: {\cal G}^3 \rightarrow {\cal G},\ i\in [3]$ and $w\in {\cal G}.$

REAL

◂**◻▸ ◂◚▸**

目

A character χ act on $\mathbb Z[G]$ in a natural way, i.e. $\ \chi\left(\sum a_{\mathcal{g}}g\right)=\sum a_{\mathcal{g}}\chi(\mathcal{g}).$

 $\psi: {\cal G}^3 \rightarrow {\cal G},\ i\in [3]$ and $w\in {\cal G}.$

We will denote by $\psi_{i\sf w} : {\sf G}^2 \to {\sf G}$ a restriction of a function ψ such that an *i*-th coordinate is w, while two others are some $x, y \in G$. i.e.

A character χ act on $\mathbb Z[G]$ in a natural way, i.e. $\ \chi\left(\sum a_{\mathcal{g}}g\right)=\sum a_{\mathcal{g}}\chi(\mathcal{g}).$

 $\psi: {\cal G}^3 \rightarrow {\cal G},\ i\in [3]$ and $w\in {\cal G}.$

We will denote by $\psi_{i\sf w} : {\sf G}^2 \to {\sf G}$ a restriction of a function ψ such that an *i*-th coordinate is w, while two others are some $x, y \in G$. i.e.

 $\psi_{2w}(x, y) = \psi(x, w, y)$ and $\psi_{1w}(x, y) = \psi(w, x, y)$.

A character χ act on $\mathbb Z[G]$ in a natural way, i.e. $\ \chi\left(\sum a_{\mathcal{g}}g\right)=\sum a_{\mathcal{g}}\chi(\mathcal{g}).$

 $\psi: {\cal G}^3 \rightarrow {\cal G},\ i\in [3]$ and $w\in {\cal G}.$

We will denote by $\psi_{i\sf w} : {\sf G}^2 \to {\sf G}$ a restriction of a function ψ such that an *i*-th coordinate is w, while two others are some $x, y \in G$. i.e.

$$
\psi_{2w}(x, y) = \psi(x, w, y)
$$
 and $\psi_{1w}(x, y) = \psi(w, x, y)$.

Let $z, w \in G$ and $i \in [3]$.

A character χ act on $\mathbb Z[G]$ in a natural way, i.e. $\ \chi\left(\sum a_{\mathcal{g}}g\right)=\sum a_{\mathcal{g}}\chi(\mathcal{g}).$

 $\psi: {\cal G}^3 \rightarrow {\cal G},\ i\in [3]$ and $w\in {\cal G}.$

We will denote by $\psi_{i\sf w} : {\sf G}^2 \to {\sf G}$ a restriction of a function ψ such that an *i*-th coordinate is w, while two others are some $x, y \in G$, i.e.

$$
\psi_{2w}(x,y)=\psi(x,w,y) \text{ and } \psi_{1w}(x,y)=\psi(w,x,y).
$$

Let $z, w \in G$ and $i \in [3]$.

 $\textsf{The sum} \quad \sum \quad \psi_{\mathsf{iz}}(\mathsf{x},\mathsf{y}) \psi_{\mathsf{iw}}(\mathsf{x},\mathsf{y}) \text{ shall be denoted by }$ $(x,y)∈G²$

A character χ act on $\mathbb Z[G]$ in a natural way, i.e. $\ \chi\left(\sum a_{\mathcal{g}}g\right)=\sum a_{\mathcal{g}}\chi(\mathcal{g}).$

 $\psi: {\cal G}^3 \rightarrow {\cal G},\ i\in [3]$ and $w\in {\cal G}.$

We will denote by $\psi_{i\sf w} : {\sf G}^2 \to {\sf G}$ a restriction of a function ψ such that an *i*-th coordinate is w, while two others are some $x, y \in G$, i.e.

$$
\psi_{2w}(x,y)=\psi(x,w,y) \text{ and } \psi_{1w}(x,y)=\psi(w,x,y).
$$

Let $z, w \in G$ and $i \in [3]$.

 $\textsf{The sum} \quad \sum \quad \psi_{\mathsf{iz}}(\mathsf{x},\mathsf{y}) \psi_{\mathsf{iw}}(\mathsf{x},\mathsf{y}) \text{ shall be denoted by }$ $(x,y)∈G²$

 $\psi_{i\mathsf{z}}(\mathsf{G}^2)\psi_{i\mathsf{w}}(\mathsf{G}^2)$.

ミドイミドー

4 ロ ▶ 4 母 ▶ 4

重

if in a group ring $\mathbb{Z}[G/K]$ the following holds:

メロトメ 倒 トメ ヨ トメ ヨ トー

造

if in a group ring $\mathbb{Z}[G/K]$ the following holds:

$$
\psi_{iz}(G^2)\psi_{iw}(G^2)K=2n^2(1+a)K,
$$

メロトメ 倒 トメ ヨ トメ ヨ トー

造

if in a group ring $\mathbb{Z}[G/K]$ the following holds:

$$
\psi_{iz}(G^2)\psi_{iw}(G^2)K=2n^2(1+a)K,
$$

for all distinct $z, w \in G$ and $i \in [3]$.

◂**◻▸ ◂◚▸**

if in a group ring $\mathbb{Z}[G/K]$ the following holds:

$$
\psi_{iz}(G^2)\psi_{iw}(G^2)K=2n^2(1+a)K,
$$

for all distinct $z, w \in G$ and $i \in [3]$.

The set of all Hadamard maps on a group G is denoted by Had(G)*.*

Main Proposition and character type subset of Had(|G|*,* 3)

Main technical (and easy to prove) proposition...

4 **D F**

Main technical (and easy to prove) proposition...

Proposition.

Let G be an abelian group of even order and let $\chi : G \to \{-1,1\}$ be a nontrivial character on G with kernel K and $G/K = \langle aK \rangle$. Let $Y \in \mathbb{Z}[G]$. Then $\chi(Y) = 0$ if and only if there is $\mu \in \mathbb{Z}$ such that $YK = \mu(1 + a)K$.

Main technical (and easy to prove) proposition...

Proposition.

Let G be an abelian group of even order and let $\chi : G \to \{-1,1\}$ be a nontrivial character on G with kernel K and $G/K = \langle aK \rangle$. Let $Y \in \mathbb{Z}[G]$. Then $\chi(Y) = 0$ if and only if there is $\mu \in \mathbb{Z}$ such that $YK = \mu(1 + a)K$.

Definition.

A *character type* subset of $Had(|G|, 3)$ is a collection of maps from $\mathcal{H}ad(|G|, 3)$ which have form $\chi\psi$, where χ is a nontrivial character on G with an image $\{-1,1\}$ and ψ is a function from G^3 to $G.$

(ロトメ倒) × (目) × (目)

Main technical (and easy to prove) proposition...

Proposition.

Let G be an abelian group of even order and let $\chi : G \to \{-1,1\}$ be a nontrivial character on G with kernel K and $G/K = \langle aK \rangle$. Let $Y \in \mathbb{Z}[G]$. Then $\chi(Y) = 0$ if and only if there is $\mu \in \mathbb{Z}$ such that $YK = \mu(1 + a)K$.

Definition.

A *character type* subset of $Had(|G|, 3)$ is a collection of maps from $\mathcal{H}ad(|G|, 3)$ which have form $\chi\psi$, where χ is a nontrivial character on G with an image $\{-1,1\}$ and ψ is a function from G^3 to $G.$

(ロトメ倒) × (目) × (目)

Hadamard map \Leftrightarrow character type subset of $\mathcal{H}ad(|G|, 3)$

4 0 F ∢母 э

Hadamard map \Leftrightarrow character type subset of $Had(|G|, 3)$

Theorem. $(Had(|G|, 3) \Leftrightarrow$ character type subset)

Let G be an abelian group of order 2n and let K *<* G be a subgroup of index 2. Then $\psi \in \mathcal{H}$ ad(G) (modulo K) if and only if $\chi \psi$ is from character type subset of $Had(2n, 3)$, where χ be a character on G with a kernel K.

Hadamard map \Leftrightarrow character type subset of $\mathcal{H}ad(|G|, 3)$

Theorem. $(Had(|G|, 3) \Leftrightarrow$ character type subset)

Let G be an abelian group of order 2n and let K *<* G be a subgroup of index 2. Then $\psi \in \mathcal{H}$ ad(G) (modulo K) if and only if $\chi \psi$ is from character type subset of $Had(2n, 3)$, where χ be a character on G with a kernel K.

For $\psi:G^2\to G$ we define a *distribution vector* $\lambda_\psi\in\mathbb{F}_2^{|G^2|}$ $\frac{1}{2}$ ¹ of a function ψ (modulo K) as

Hadamard map \Leftrightarrow character type subset of $\mathcal{H}ad(|G|, 3)$

Theorem. $(Had(|G|, 3) \Leftrightarrow$ character type subset)

Let G be an abelian group of order 2n and let K *<* G be a subgroup of index 2. Then $\psi \in \mathcal{H}$ ad(G) (modulo K) if and only if $\chi \psi$ is from character type subset of $Had(2n, 3)$, where χ be a character on G with a kernel K.

For $\psi:G^2\to G$ we define a *distribution vector* $\lambda_\psi\in\mathbb{F}_2^{|G^2|}$ $\frac{1}{2}$ ¹ of a function ψ (modulo K) as

 $\lambda_{\psi} = (\lambda_{\psi}(g))_{g \in G^2}$

Hadamard map \Leftrightarrow character type subset of $\mathcal{H}ad(|G|, 3)$

Theorem. $(Had(|G|, 3) \Leftrightarrow$ character type subset)

Let G be an abelian group of order 2n and let K *<* G be a subgroup of index 2. Then $\psi \in \mathcal{H}$ ad(G) (modulo K) if and only if $\chi \psi$ is from character type subset of $Had(2n, 3)$, where χ be a character on G with a kernel K.

For $\psi:G^2\to G$ we define a *distribution vector* $\lambda_\psi\in\mathbb{F}_2^{|G^2|}$ $\frac{1}{2}$ ¹ of a function ψ (modulo K) as

 $\lambda_{\psi} = (\lambda_{\psi}(g))_{g \in G^2}$

where $\lambda_{\psi}(g) = 1$ if and only if $\psi(g) \notin K$

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

4 0 8

э

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

For $(v_1,\ldots,v_{4n^2})\in V$ we define a norm of v as $|v| = |\{i \in [4n^2] \mid v_i = 1.\}|$

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

For
$$
(v_1, \ldots, v_{4n^2}) \in V
$$
 we define a norm of v as $|v| = |\{i \in [4n^2] \mid v_i = 1.\}|$

A set of vectors $\{v_i \mid i \in [2n]\} \subseteq V$ is called a $(4n^2, 2n^2, 2n)$ -net if $|v_i + v_j| = 2n^2$ for all distinct *i* and *j*.

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

For
$$
(v_1, \ldots, v_{4n^2}) \in V
$$
 we define a norm of v as $|v| = |\{i \in [4n^2] \mid v_i = 1.\}|$

A set of vectors $\{v_i \mid i \in [2n]\} \subseteq V$ is called a $(4n^2, 2n^2, 2n)$ -net if $|v_i + v_j| = 2n^2$ for all distinct *i* and *j*.

Proposition.

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $\overline{G/K}=\langle aK\rangle$ and $\psi:G^2\to G.$ Then $\psi(\mathcal{G}^2) = \frac{1}{2} |\mathcal{G}^2|(1+a)\mathcal{K}$ if and only if a distribution vector λ_ψ has norm equal to $\frac{1}{2}|G^2|$.

Let V be a vector space of dimension $4n^2$ over \mathbb{F}_2 .

For
$$
(v_1, \ldots, v_{4n^2}) \in V
$$
 we define a norm of v as $|v| = |\{i \in [4n^2] \mid v_i = 1.\}|$

A set of vectors $\{v_i \mid i \in [2n]\} \subseteq V$ is called a $(4n^2, 2n^2, 2n)$ -net if $|v_i + v_j| = 2n^2$ for all distinct *i* and *j*.

Proposition.

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $\overline{G/K}=\langle aK\rangle$ and $\psi:G^2\to G.$ Then $\psi(\mathcal{G}^2) = \frac{1}{2} |\mathcal{G}^2|(1+a)\mathcal{K}$ if and only if a distribution vector λ_ψ has norm equal to $\frac{1}{2}|G^2|$.

 \Rightarrow

4 0 8

→ 母

重

Let G be an abelian group of even order and let K *<* G be a subgroup of i ndex 2 such that $G/K = \langle aK \rangle$. Let $\psi_i: G^2 \to G, \,\, i=1,2$ where λ_{ψ_i} are respective distribution vectors. Then the following is equivalent

\n- \n
$$
\psi_1 \psi_2(G^2) K = \frac{1}{2} |G^2|(1+a)K,
$$
\n
\n- \n
$$
|\lambda_{\psi_1} + \lambda_{\psi_2}| = \frac{1}{2} |G^2|,
$$
\n
\n- \n where $\psi_1 \psi_2(G^2) = \sum_{g \in G^2} \psi_1(g) \psi_2(g).$ \n
\n

Let G be an abelian group of even order and let K *<* G be a subgroup of i ndex 2 such that $G/K = \langle aK \rangle$. Let $\psi_i: G^2 \to G, \,\, i=1,2$ where λ_{ψ_i} are respective distribution vectors. Then the following is equivalent

\n- \n
$$
\psi_1 \psi_2(G^2) K = \frac{1}{2} |G^2|(1+a)K,
$$
\n
\n- \n
$$
|\lambda_{\psi_1} + \lambda_{\psi_2}| = \frac{1}{2} |G^2|,
$$
\n
\n- \n where $\psi_1 \psi_2(G^2) = \sum_{g \in G^2} \psi_1(g) \psi_2(g).$ \n
\n

 \Rightarrow

4 0 8

→ 母

重

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz}\mid z\in\mathit{G}\}$ is a $(4n^2,2n^2,2n)$ -net, $\psi_{iz}(x,y)=$ a $^{\varphi_{iz}(x,y)}k_{iz}(x,y),\,\,i\in[3],\,\,k_{iz}(x,y)\in K$ for some order of G 2 *.*

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz}\mid z\in\mathit{G}\}$ is a $(4n^2,2n^2,2n)$ -net, $\psi_{iz}(x,y)=$ a $^{\varphi_{iz}(x,y)}k_{iz}(x,y),\,\,i\in[3],\,\,k_{iz}(x,y)\in K$ for some order of G 2 *.*

Let $\varphi:G^{3}\rightarrow\mathbb{F}_{2}.$ Let $x_{0},\ y_{0}$ and z_{0} are from G and

つひひ

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz}\mid z\in\mathit{G}\}$ is a $(4n^2,2n^2,2n)$ -net, $\psi_{iz}(x,y)=$ a $^{\varphi_{iz}(x,y)}k_{iz}(x,y),\,\,i\in[3],\,\,k_{iz}(x,y)\in K$ for some order of G 2 *.*

Let $\varphi:G^{3}\rightarrow\mathbb{F}_{2}.$ Let $x_{0},\ y_{0}$ and z_{0} are from G and

$$
\varphi_{1x_0}=(\varphi(x_0,y,z))_{(y,z)\in G^2}\in \mathbb{F}_2^{4n^2},
$$

つひひ

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz}\mid z\in\mathit{G}\}$ is a $(4n^2,2n^2,2n)$ -net, $\psi_{iz}(x,y)=$ a $^{\varphi_{iz}(x,y)}k_{iz}(x,y),\,\,i\in[3],\,\,k_{iz}(x,y)\in K$ for some order of G 2 *.*

Let $\varphi:G^{3}\rightarrow\mathbb{F}_{2}.$ Let $x_{0},\ y_{0}$ and z_{0} are from G and

$$
\varphi_{1x_0}=(\varphi(x_0,y,z))_{(y,z)\in G^2}\in \mathbb{F}_2^{4n^2},
$$

$$
\varphi_{2y_0} = (\varphi(x, y_0, z))_{(x, z) \in G^2} \in \mathbb{F}_2^{4n^2},
$$

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz}\mid z\in\mathit{G}\}$ is a $(4n^2,2n^2,2n)$ -net, $\psi_{iz}(x,y)=$ a $^{\varphi_{iz}(x,y)}k_{iz}(x,y),\,\,i\in[3],\,\,k_{iz}(x,y)\in K$ for some order of G 2 *.*

Let $\varphi:G^{3}\rightarrow\mathbb{F}_{2}.$ Let $x_{0},\ y_{0}$ and z_{0} are from G and

$$
\varphi_{1x_0}=(\varphi(x_0,y,z))_{(y,z)\in G^2}\in \mathbb{F}_2^{4n^2},
$$

$$
\varphi_{2y_0}=\left(\varphi(x,y_0,z)\right)_{(x,z)\in G^2}\in \mathbb{F}_2^{4n^2},
$$

$$
\varphi_{3z_0}=(\varphi(x,y,z_0))_{(x,y)\in G^2}\in \mathbb{F}_2^{4n^2}.
$$

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $G/K = \langle aK \rangle$. Then $\psi \in \mathcal{H}ad(G)$ (modulo K) if and only if the set of distribution vectors $\{\varphi_{iz}\mid z\in\mathit{G}\}$ is a $(4n^2,2n^2,2n)$ -net, $\psi_{iz}(x,y)=$ a $^{\varphi_{iz}(x,y)}k_{iz}(x,y),\,\,i\in[3],\,\,k_{iz}(x,y)\in K$ for some order of G 2 *.*

Let $\varphi:G^{3}\rightarrow\mathbb{F}_{2}.$ Let $x_{0},\ y_{0}$ and z_{0} are from G and

$$
\varphi_{1x_0}=(\varphi(x_0,y,z))_{(y,z)\in G^2}\in \mathbb{F}_2^{4n^2},
$$

$$
\varphi_{2y_0}=\left(\varphi(x,y_0,z)\right)_{(x,z)\in G^2}\in \mathbb{F}_2^{4n^2},
$$

$$
\varphi_{3z_0}=(\varphi(x,y,z_0))_{(x,y)\in G^2}\in \mathbb{F}_2^{4n^2}.
$$

 \Rightarrow

4 0 8

→ 母

重

4 **D F**

э

 $\{\varphi_{ig}\mid g\in G\}$ is a $(4n^2, 2n^2, 2n)$ -net for any $i\in [3]$.

$$
\{\varphi_{ig} \mid g \in G\} \text{ is a } (4n^2, 2n^2, 2n) \text{-net for any } i \in [3].
$$

Theorem. $(Had(G) \Leftrightarrow$ net cube)

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $\mathsf{G}/\mathsf{K}=\langle a\mathsf{K}\rangle.$ Let $\psi:\mathsf{G}^3\to\mathsf{G}$ be a map where $\psi(x,y,z) = \mathsf{a}^{\varphi(x,y,z)} \mathsf{k}(x,y,z)$, such that $\varphi(x,y,z) \in \mathbb{F}_2$ and $k(x, y, z) \in K$ for $(x, y, z) \in G^3$. Then $\psi \in H$ ad(G) if and only if φ is $(4n^2, 2n^2, 2n)$ -net cube.

$$
\{\varphi_{ig} \mid g \in G\} \text{ is a } (4n^2, 2n^2, 2n) \text{-net for any } i \in [3].
$$

Theorem. $(Had(G) \Leftrightarrow$ net cube)

Let G be an abelian group of even order and let K *<* G be a subgroup of index 2 such that $\mathsf{G}/\mathsf{K}=\langle a\mathsf{K}\rangle.$ Let $\psi:\mathsf{G}^3\to\mathsf{G}$ be a map where $\psi(x,y,z) = \mathsf{a}^{\varphi(x,y,z)} \mathsf{k}(x,y,z)$, such that $\varphi(x,y,z) \in \mathbb{F}_2$ and $k(x, y, z) \in K$ for $(x, y, z) \in G^3$. Then $\psi \in H$ ad(G) if and only if φ is $(4n^2, 2n^2, 2n)$ -net cube.

Final circle

目。 2990

イロメ イ部メ イヨメ イヨメー

Theorem. (net cube \Leftrightarrow 3-dim Hadamard cube

The existence of a $(4n^2,2n^2,2n)$ -net cube on an abelian group *G* of order 2n is equivalent to the existence of a 3-dimensional Hadamard cube of order 2n*.*

Theorem. (net cube \Leftrightarrow 3-dim Hadamard cube

The existence of a $(4n^2,2n^2,2n)$ -net cube on an abelian group *G* of order 2n is equivalent to the existence of a 3-dimensional Hadamard cube of order 2n*.*

Thank you!

イロト イ部 トイヨ トイヨト

重