On the Petersen Coloring Conjecture

Jelena Sedlar University of Split, Croatia

(joint work with Riste Škrekovski)

CroCoDays 2024, Zagreb, Croatia

19-20 September 2024

Jelena Sedlar (University of Split)

On the Petersen Coloring Conjecture

19-20 September 2024

A (proper) k-edge-coloring of a graph G = (V, E) is any mapping $\sigma : E \to \{1, \dots, k\}$ such that any two adjacent edges have distinct colors.

A (proper) *k*-edge-coloring of a graph G = (V, E) is any mapping $\sigma : E \to \{1, ..., k\}$ such that any two adjacent edges have distinct colors.

A cubic graph G is a graph in which every vertex has degree 3.

A (proper) k-edge-coloring of a graph G = (V, E) is any mapping $\sigma : E \to \{1, ..., k\}$ such that any two adjacent edges have distinct colors.

A cubic graph G is a graph in which every vertex has degree 3.

Observation. Vizing's Theorem implies that a cubic graph G admits an edge-coloring with 3 or 4 colors.

A (proper) k-edge-coloring of a graph G = (V, E) is any mapping $\sigma : E \to \{1, ..., k\}$ such that any two adjacent edges have distinct colors.

A cubic graph G is a graph in which every vertex has degree 3.

Observation. Vizing's Theorem implies that a cubic graph G admits an edge-coloring with 3 or 4 colors.

A (proper) k-edge-coloring of a graph G = (V, E) is any mapping $\sigma : E \to \{1, ..., k\}$ such that any two adjacent edges have distinct colors.

A cubic graph G is a graph in which every vertex has degree 3.

Observation. Vizing's Theorem implies that a cubic graph G admits an edge-coloring with 3 or 4 colors.

Observation. If a cubic graph G has a bridge, then $\chi'(G) = 4$.

Image: Image:

3

Observation. If a cubic graph G has a bridge, then $\chi'(G) = 4$.

A snark is a bridgeless cubic graph G with $\chi'(G) = 4$.

э

Observation. If a cubic graph G has a bridge, then $\chi'(G) = 4$.

A **snark** is a bridgeless cubic graph *G* with $\chi'(G) = 4$.

The **Petersen graph** P_{10} is the smallest snark.

Observation. In a proper edge-coloring of a cubic graph G, the number of colors of e and its incident edges is 3, 4 or 5.

An edge *e* is **poor** if the number of incident colors is 3, and it is **rich** if the number of incident colors is 5.

Observation. In a proper edge-coloring of a cubic graph G, the number of colors of e and its incident edges is 3, 4 or 5.

An edge *e* is **poor** if the number of incident colors is 3, and it is **rich** if the number of incident colors is 5.

A **normal edge-coloring** of a cubic graph is an edge coloring such that every edge is poor or rich.

Observation. In a proper edge-coloring of a cubic graph G, the number of colors of e and its incident edges is 3, 4 or 5.

An edge *e* is **poor** if the number of incident colors is 3, and it is **rich** if the number of incident colors is 5.

A **normal edge-coloring** of a cubic graph is an edge coloring such that every edge is poor or rich.

Petersen Coloring Conjecture (restatement). If G is a bridgeless cubic graph, then G has a normal 5-edge-coloring.

A **multipole** is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

A **multipole** is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

A **multipole** is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

A cubic multipole M is:

• a supervertex if it has 3 connectors;

A **multipole** is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

A cubic multipole M is:

• a supervertex if it has 3 connectors;

A **multipole** is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

- a supervertex if it has 3 connectors;
- a superedge if it has 2 connectors.

A **multipole** is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

A cubic multipole M is:

- a supervertex if it has 3 connectors;
- a superedge if it has 2 connectors.

supervertex

A **multipole** is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

- a supervertex if it has 3 connectors;
- a superedge if it has 2 connectors.

A multipole is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

- a supervertex if it has 3 connectors;
- a superedge if it has 2 connectors.

A multipole is a triple M = (V, E, S) which has a set of vertices V, a set of edges E, and a set of semiedges S.

- a supervertex if it has 3 connectors;
- a superedge if it has 2 connectors.

A superposition $G(\mathcal{V}, \mathcal{E})$ is obtained from a snark G by replacing:

- each vertex v with a supervertex $\mathcal{V}(v)$;
- each edge e with a superedge $\mathcal{E}(e)$;

so that e and v are incident if and only if $\mathcal{V}(v)$ and $\mathcal{E}(e)$ are incident.

6/16

A superposition $G(\mathcal{V}, \mathcal{E})$ is obtained from a snark G by replacing:

- each vertex v with a supervertex $\mathcal{V}(v)$;
- each edge e with a superedge $\mathcal{E}(e)$;

so that e and v are incident if and only if $\mathcal{V}(v)$ and $\mathcal{E}(e)$ are incident.

A superposition $G(\mathcal{V}, \mathcal{E})$ is obtained from a snark G by replacing:

- each vertex v with a supervertex $\mathcal{V}(v)$;
- each edge e with a superedge $\mathcal{E}(e)$;

so that e and v are incident if and only if $\mathcal{V}(v)$ and $\mathcal{E}(e)$ are incident.

A superposition $G(\mathcal{V}, \mathcal{E})$ is obtained from a snark G by replacing:

- each vertex v with a supervertex $\mathcal{V}(v)$;
- each edge e with a superedge $\mathcal{E}(e)$;

so that e and v are incident if and only if $\mathcal{V}(v)$ and $\mathcal{E}(e)$ are incident.

A **proper superedge** $H_{x,y}$ is a superedge obtained from a snark H by removing a pair of nonadjacent vertices x and y.

A **proper superedge** $H_{x,y}$ is a superedge obtained from a snark H by removing a pair of nonadjacent vertices x and y.

A **proper superedge** $H_{x,y}$ is a superedge obtained from a snark H by removing a pair of nonadjacent vertices x and y.

A **proper superedge** $H_{x,y}$ is a superedge obtained from a snark H by removing a pair of nonadjacent vertices x and y.

Theorem. If G is a snark and $\mathcal{E}(e)$ a proper superedge for every edge e, then $G(\mathcal{V}, \mathcal{E})$ is also a snark.

A **proper superedge** $H_{x,y}$ is a superedge obtained from a snark H by removing a pair of nonadjacent vertices x and y.

Theorem. If G is a snark and $\mathcal{E}(e)$ a proper superedge for every edge e, then $G(\mathcal{V}, \mathcal{E})$ is also a snark.

We will consider superpositions by proper superedges $H_{x,y}$ where H is:

- a hypohamiltonian snark;
- a Flower snark.

Let us consider a superposition $G(\mathcal{V}, \mathcal{E})$ of a snark G.

Let us consider a superposition $G(\mathcal{V}, \mathcal{E})$ of a snark G.

Let us consider a superposition $G(\mathcal{V}, \mathcal{E})$ of a snark G.

We use supervertices A or A'.

8/16

Let us consider a superposition $G(\mathcal{V}, \mathcal{E})$ of a snark G.

А

We use supervertices A or A'.

Let us consider a superposition $G(\mathcal{V}, \mathcal{E})$ of a snark G.

We use supervertices A or A'.

A

Let us consider a superposition $G(\mathcal{V}, \mathcal{E})$ of a snark G.

А

We use supervertices A or A'.

A

Let us consider a superposition $G(\mathcal{V}, \mathcal{E})$ of a snark G.

А

We use supervertices A or A'.

A

Let us consider a superposition $G(\mathcal{V}, \mathcal{E})$ of a snark G.

We use supervertices A or A'.

We use superedges $H_{x,y}$, where H is any snark and $d(x, y) \ge 3$.

Our aim is to **extend** a normal 5-edge-coloring of G to $G(\mathcal{V}, \mathcal{E})$.

19-20 September 2024

Our aim is to **extend** a normal 5-edge-coloring of G to $G(\mathcal{V}, \mathcal{E})$.

10 / 16

Our aim is to **extend** a normal 5-edge-coloring of G to $G(\mathcal{V}, \mathcal{E})$.

10 / 16

Theorem. A superposition $G(\mathcal{V}, \mathcal{E})$ has a normal 5-edge-coloring if $H_{x,y}$ is **fully right**, i.e. it has a normal 5-edge-coloring compatible with all three color schemes below.

Theorem. A superposition $G(\mathcal{V}, \mathcal{E})$ has a normal 5-edge-coloring if $H_{x,y}$ is **fully right**, i.e. it has a normal 5-edge-coloring compatible with all three color schemes below.

A snark *H* is **hypohamiltonian** if $H \setminus \{y\}$ contains Hamiltonian cycle for every $y \in V(H)$.

Proposition. Flower snarks are hypohamiltonian.

A snark *H* is **hypohamiltonian** if $H \setminus \{y\}$ contains Hamiltonian cycle for every $y \in V(H)$.

Proposition. Flower snarks are hypohamiltonian.

Observation. There exists a superedge $H_{x,y}$, where H is a Flower snark, which is **<u>not</u>** fully right.

We approach superedges which are \underline{not} fully right by considering $\underline{a \text{ pair}}$ of consecutive superedges as a whole.

Theorem. A superposition $G(\mathcal{V}, \mathcal{E})$ has a normal 5-edge-coloring if $H_{x,y}$ is **doubly right** and **doubly left**.

Theorem. A superposition $G(\mathcal{V}, \mathcal{E})$ has a normal 5-edge-coloring if $H_{x,y}$ is **doubly right** and **doubly left**.

14 / 16

Theorem. A superposition $G(\mathcal{V}, \mathcal{E})$ has a normal 5-edge-coloring if $H_{x,y}$ is **doubly right** and **doubly left**.

Proposition. A superedge $H_{x,y}$, where H is a Flower snark and $d(x, y) \ge 3$, is both doubly right and doubly left.

Theorem. A superposition $G(\mathcal{V}, \mathcal{E})$ has a normal 5-edge-coloring if $H_{x,y}$ is **doubly right** and **doubly left**.

Proposition. A superedge $H_{x,y}$, where H is a Flower snark and $d(x, y) \ge 3$, is both doubly right and doubly left.

Concluding remarks

Jelena Sedlar (University of Split) On the Petersen Coloring Conjecture 19-20 September 2024

2

16 / 16

→ 4 Ξ

Concluding remarks

Further work. Regarding the properties

'fully right', 'doubly right' and 'doubly left',

it would be interesting:

Concluding remarks

Further work. Regarding the properties

'fully right', 'doubly right' and 'doubly left',

it would be interesting:

• to establish them for some other families of snarks;

Further work. Regarding the properties

'fully right', 'doubly right' and 'doubly left',

it would be interesting:

- to establish them for some other families of snarks;
- especially to do it by some other method than the 'brute force'.

Further work. Regarding the properties

'fully right', 'doubly right' and 'doubly left',

it would be interesting:

- to establish them for some other families of snarks;
- especially to do it by some other method than the 'brute force'.

Thank you for the attention.