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Introduction

A (proper) k-edge-coloring of a graph G = (V, E) is any mapping
o:E— {1,..., k} such that any two adjacent edges have distinct colors.
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Introduction

Observation. If a cubic graph G has a bridge, then x'(G) = 4.
A snark is a bridgeless cubic graph G with x'(G) = 4.

The Petersen graph Pig is the smallest snark.
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Introduction

Observation. In a proper edge-coloring of a cubic graph G, the number of
colors of e and its incident edges is 3,4 or 5.

An edge e is poor if the number of incident colors is 3, and it is rich if the
number of incident colors is 5.

A normal edge-coloring of a cubic graph is an edge coloring such that
every edge is poor or rich.

Petersen Coloring Conjecture (restatement). If G is a bridgeless cubic
graph, then G has a normal 5-edge-coloring.
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Introduction

A multipole is a triple M = (V, E, S) which has a set of vertices V, a set
of edges E, and a set of semiedges S.
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Introduction

A proper superedge H, , is a superedge obtained from a snark H by
removing a pair of nonadjacent vertices x and y.

Theorem. If G is a snark and £(e) a proper superedge for every edge e,
then G(V, €) is also a snark.

Jelena Sedlar (University of Split) On the Petersen Coloring Conjecture 19-20 September 2024 7/16



Introduction

A proper superedge H, , is a superedge obtained from a snark H by
removing a pair of nonadjacent vertices x and y.

Theorem. If G is a snark and £(e) a proper superedge for every edge e,
then G(V, €) is also a snark.

We will consider superpositions by proper superedges Hy,, where H is:
@ a hypohamiltonian snark;

@ a Flower snark.
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Superposition and normal colorings

Let us consider a superposition G(V, E) of a snark G.
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Superposition and normal colorings

Let us consider a superposition G(V, E) of a snark G.

We use supervertices A or A’.

We use superedges Hy,,, where H is any snark and d(x,y) > 3.
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Superposition and normal colorings

Our aim is to extend a normal 5-edge-coloring of G to G(V, E).
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Superposition and normal colorings

Theorem. A superposition G(V, £) has a normal 5-edge-coloring if Hy

is fully right, i.e. it has a normal 5-edge-coloring compatible with all three
color schemes below.
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Superposition and normal colorings

A snark H is hypohamiltonian if H\{y} contains Hamiltonian cycle for
every y € V(H).
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Superposition and normal colorings
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Superposition and normal colorings

A snark H is hypohamiltonian if H\{y} contains Hamiltonian cycle for
every y € V(H).
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Proposition. Flower snarks are hypohamiltonian.
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Superposition and normal colorings

A snark H is hypohamiltonian if H\{y} contains Hamiltonian cycle for
every y € V(H).
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Proposition. Flower snarks are hypohamiltonian.

Observation. There exists a superedge H, ,, where H is a Flower snark,
which is not fully right.
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Superposition and normal colorings

We approach superedges which are not fully right by considering a pair of
consecutive superedges as a whole.
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Superposition and normal colorings

Theorem. A superposition G(V, £) has a normal 5-edge-coloring if Hy
is doubly right and doubly left.
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Superposition and normal colorings

Theorem. A superposition G(V, £) has a normal 5-edge-coloring if Hy
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Proposition. A superedge H, ,, where H is a Flower snark and
d(x,y) > 3, is both doubly right and doubly left.
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Concluding remarks

Further work. Regarding the properties
"fully right', "doubly right" and 'doubly left’,

it would be interesting:
@ to establish them for some other families of snarks;

@ especially to do it by some other method than the 'brute force’.

Thank you for the attention.
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