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Introduction

A (proper) k-edge-coloring of a graph G = (V ,E ) is any mapping
σ : E → {1, . . . , k} such that any two adjacent edges have distinct colors.

A cubic graph G is a graph in which every vertex has degree 3.

Observation. Vizing’s Theorem implies that a cubic graph G admits an
edge-coloring with 3 or 4 colors.
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Introduction

Observation. If a cubic graph G has a bridge, then χ′(G ) = 4.

A snark is a bridgeless cubic graph G with χ′(G ) = 4.

The Petersen graph P10 is the smallest snark.
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Introduction

Observation. In a proper edge-coloring of a cubic graph G , the number of
colors of e and its incident edges is 3, 4 or 5.

An edge e is poor if the number of incident colors is 3, and it is rich if the
number of incident colors is 5.

A normal edge-coloring of a cubic graph is an edge coloring such that
every edge is poor or rich.

Petersen Coloring Conjecture (restatement). If G is a bridgeless cubic
graph, then G has a normal 5-edge-coloring.
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Introduction

A multipole is a triple M = (V ,E ,S) which has a set of vertices V , a set
of edges E , and a set of semiedges S .

A cubic multipole M is:

a supervertex if it has 3 connectors;
a superedge if it has 2 connectors.

supervertex superedge
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Introduction

A superposition G (V , E) is obtained from a snark G by replacing:

each vertex v with a supervertex V(v);
each edge e with a superedge E(e);

so that e and v are incident if and only if V(v) and E(e) are incident.
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Introduction

A proper superedge Hx ,y is a superedge obtained from a snark H by
removing a pair of nonadjacent vertices x and y .

Theorem. If G is a snark and E(e) a proper superedge for every edge e,
then G (V , E) is also a snark.

We will consider superpositions by proper superedges Hx ,y where H is:

a hypohamiltonian snark;

a Flower snark.
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Superposition and normal colorings

Let us consider a superposition G (V , E) of a snark G .

We use supervertices A or A′.

A A′
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Superposition and normal colorings

Let us consider a superposition G (V , E) of a snark G .

We use supervertices A or A′.

We use superedges Hx ,y , where H is any snark and d(x , y) ≥ 3.
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Superposition and normal colorings

Our aim is to extend a normal 5-edge-coloring of G to G (V , E).
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Superposition and normal colorings

Theorem. A superposition G (V , E) has a normal 5-edge-coloring if Hx ,y

is fully right, i.e. it has a normal 5-edge-coloring compatible with all three
color schemes below.
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Superposition and normal colorings

A snark H is hypohamiltonian if H\{y} contains Hamiltonian cycle for
every y ∈ V (H).

Proposition. Flower snarks are hypohamiltonian.

Observation. There exists a superedge Hx ,y , where H is a Flower snark,
which is not fully right.
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Superposition and normal colorings

We approach superedges which are not fully right by considering a pair of
consecutive superedges as a whole.
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Superposition and normal colorings

Theorem. A superposition G (V , E) has a normal 5-edge-coloring if Hx ,y

is doubly right and doubly left.
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Superposition and normal colorings
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Proposition. A superedge Hx ,y , where H is a Flower snark and
d(x , y) ≥ 3, is both doubly right and doubly left.
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Concluding remarks

Further work. Regarding the properties

’fully right’, ’doubly right’ and ’doubly left’,

it would be interesting:

to establish them for some other families of snarks;

especially to do it by some other method than the ’brute force’.

Thank you for the attention.
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