Resonance graphs of linear phenylenes

Luka Podrug

University of Zagreb Faculty of Civil Engineering (joint work with Tomislav Došlić)

5th Croatian Combinatorial Days Zagreb, Croatia

September 19-20, 2024

Alphabet $\mathcal{T} = \{0, 1\}$. Adjacency $0 \leftrightarrow 1$

Figure: Hypercubes Q_1, Q_2, Q_3 and Q_4 .

Alphabet $\mathcal{T} = \{0,1\}.$ Adjacency $0 \leftrightarrow 1$

Alphabet
$$S^a = \{0, 1, 2, \dots, a - 1, a\}.$$

Alphabet $S^{a} = \{0, 1, 2, \dots, a - 1, a\}.$

 $\mathcal{S}^3=0,1,2,3.$

Alphabet $S^a = \{0, 1, 2, ..., a - 1, a\}.$

 $\mathcal{S}^3=0,1,2,3.$

211203,

Alphabet
$$S^{a} = \{0, 1, 2, \dots, a - 1, a\}.$$

 $\mathcal{S}^3=0,1,2,3.$

211203, 130202

Alphabet $S^{a} = \{0, 1, 2, \dots, a - 1, a\}.$

 $\mathcal{S}^3=0,1,2,3.$

211203, 130202

 $s_n = a \cdot s_{n-1} + s_{n-2}$

Alphabet $S^a = \{0, 1, 2, \dots, a - 1, a\}.$ $S^3 = 0, 1, 2, 3.$

211203, 130202

 $s_n = a \cdot s_{n-1} + s_{n-2}$

Graph Π_n^a :

 $V(\Pi_n^a) = \mathcal{S}_n^a.$

Alphabet $S^a = \{0, 1, 2, \dots, a-1, a\}.$

 $\mathcal{S}^3=0,1,2,3.$

211203, <mark>130202</mark>

 $s_n = a \cdot s_{n-1} + s_{n-2}$

Graph Π_n^a :

 $V(\Pi_n^a) = \mathcal{S}_n^a.$

For $\alpha = \alpha_1 \cdots \alpha_n$ and $\beta = \beta_1 \cdots \beta_n$ we define

$$\overline{h}(\alpha,\beta) = \sum_{k=1}^{n} |\alpha_k - \beta_k|.$$

Then α and β are adjacent if and only if $\overline{h}(\alpha, \beta) = 1$.

Figure: Ladder graph L_3 .

Figure: Ladder graph L_3 .

Figure: All perfect matching of the ladder graph L_3 .

Figure: Ladder graph L_3 .

Figure: All perfect matching of the ladder graph L_3 .

¹S. Klavžar and P. Žigert Pleteršek, Fibonacci Cubes are the Resonance Graphs of Fibonaccenes, *Fibonacci Quart.* 43 (3), 2005

¹S. Klavžar and P. Žigert Pleteršek, Fibonacci Cubes are the Resonance Graphs of Fibonaccenes, *Fibonacci Quart.* 43 (3), 2005

¹S. Klavžar and P. Žigert Pleteršek, Fibonacci Cubes are the Resonance Graphs of Fibonaccenes, *Fibonacci Quart.* 43 (3), 2005

Benzenoids and phenylenes

Benzenoids and phenylenes

Figure: Benzenoid and phenylene

Generalized phenylenes

Let $a \geq 1$.

Generalized phenylenes

Let $a \geq 1$.

Generalized phenylenes

Let $a \ge 1$.

a = 3

Metallic cubes are the resonance graphs of (generalized) phenylenes

Figure: Generalized phenylene P_3^3 .

Metallic cubes are the resonance graphs of (generalized) phenylenes

Figure: Generalized phenylene P_3^3 .

Figure: Generalized phenylene P_4^3 .

Metallic cubes are the resonance graphs of (generalized) phenylenes

Figure: Generalized phenylene P_3^3 .

Figure: Generalized phenylene P_4^3 .

Figure: Phenylene P_4^2 .

Metallic cube Π_n^a is the resonance graphs of generalized phenylene P_n^a .

Figure: All perfect matching of the hexagonal chain with 4 hexagons.

Figure: There are no horizontal edges of the quadrilateral in the perfect matching.

Figure: There are no horizontal edges of the quadrilateral in the perfect matching.

Figure: The perfect matching in the phenylene where both horizontal edges of the last quadrilateral are in the matching.

12030

Luka Podrug

Resonance graphs of linear phenylenes 14 / 17

Figure: Metallic cube Π_2^3 as resonance graph of P_2^3 .

Figure: Metallic cube Π_3^2 as resonance graph of P_3^2 .

Thank you for your attention!