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Semiregular permutations, semiregular subgroups

• Let Γ ≤ SX be a permutation group acting on a set X of
cardinality n.

• A nontrivial group element α ∈ Γ is semiregular if
α = (. . .)(. . .) · · · (. . .) is a product of, say k disjoint cycles, k < n,
of equal length, say m.

• A subgroup Γ′ ≤ Γ is semiregular if all orbits have the same
size.



Semiregular automorphisms of a simple graph

• G – simple graph of order n, i.e. n = |VG |

• AutG – group of automorphisms, acting on its vertex set
VG .

• Automorphism α ∈ AutG – permutation of VG that preserves
adjacency.

• Nontrivial α ∈ AutG is a semiregular automorphism if α acts
semiregularly on the vertex set VG of a simple graph G .



Polycirculants

• Note: For a semiregular α with k orbits of size m we have
αm = 1 and n = km. Hence m > 1 and k ,m both divide n.

Definition
Graph G that admits a semiregular automorphism α is
polycirculant. More precisely, if αm = 1 and mk = n, then G is a
k-circulant.

• For k = 1 we get circulants,

• for k = 2 we get bicirculants,

• for k = 3 we get tricirculants,

• for k = 4 we get tetracirculants, etc.



Motivation: Polycirculant conjecture
Conjecture (Marušič, 1981)

Every vertex-transitive graph is polycirculant.

Still partially open.

Nowadays, research in the opposite direction became popular.

Problem
Among polycirculants classify vertex-transitive graphs.

• On the one hand one can restrict attention to some particular
class of polycirculants, say cubic tetracirculants.

• On the other hand one can replace the property of
vertex-transitivity by some other property, such as arc-transitivity,
hamiltonicity, etc.

• These variations make the study of polycirculants interesting and
important, even if they are not vertex-transitive,



Induced action on edges and arcs.
A graph automorphism may be viewed as acting on edges and
arcs.

Semiregular automorphism (with vertex orbits of size m) acts
semiregularly also on the set of arcs. If m is odd it also acts
semiregularly on the set of edges. However, if m = 2m0 is even,
some edge orbits may have size m0.

Example

• K4 is a circulant.
• Automorphism α = (0123) is
(semi)regular on the vertex set with 1
orbit of size 4.
• On the edge set it has two orbits,
blue-red of size 4 and green orbit of
size 2.
• It is semiregular on the arc set with
3 orbits, blue, red and green of size 4.



More precisely

Proposition
An automorphism of a simple graph that acts semiregularly on the
vertex set with orbits of size m also acts semiregularly on the arc
set with orbits of size m.

Proposition
An automorphism of a simple graph that acts semiregularly on the
vertex set with size m also acts on the edge set such that orbits are
of size m or m/2.

Proposition
An automorphism of a simple graph that acts semiregularly on the
arc set need not to act semiregularly on the vertex set.



Vertices, Edges, and Arcs in a Simple Graph

• An arc a has the initial vertex v = i(a) and the reverse arc
b = r(a).

• An edge is composed of a pair of reverse arcs.



Automorphisms for Multigraphs (parallel edges allowed) are
more complicated.

• This (multi)graph, with three parallel edges between two vertices
is usually called the Θ-graph and is denoted by Θ3.

• There are only 2 permutations of its vertices, however
|AutΘ3| = 12.

• We need a more sophisticated model for such graphs and their
automorphisms.



Most general model for graphs

Definition
Let G = (V ,A, i , r) be a structure, with
• vertex set V ,
• arc set A,
• initial vertex mapping i : A → V ,
• involutory reverse arc mapping r : A → A,
Then G is called a pregraph.



Edges: links, loops, and semiedges in Pregraphs

• Recall that an edge is composed of a pair of reverse arcs.

• An edge with both initial
vertices distinct is a link or proper
edge.
• An edge with both initial
vertices the same is a loop.
• An edge with both initial arcs
the same is a semiedge.



Automorphisms for most general graphs: pregraphs

Definition
Let G = (V ,A, i , r) be a pregraph.
An automorphism α is a pair of bijections:

αV : V → V

αA : A → A

such that i(r(α(a))) = α(i(r(a)))



Graph G is . . .

• simple, if it has no loops,
parallel edges (multi-edges) or
semiedges. (Available in
SageMath)

• general, if it has no semiedges.
(Available in SageMath)

• pregraph (may have loops,
parallel edges or semiedges).
(NOT available in SageMath)



Valence (degree), regular graphs

• The number of arcs with the same initial vertex v is the valence
of v .

• Graph is regular if all vertices have the same valence k . Regular
graphs of valence k = 3 are cubic, for k = 4, quartic, etc.



Engineering project No. 1.

Pregraphs admit a natural
combinatorial description that is
suitable for computer
representation.
• Note that |AutG | = 4 for the
pregraph on the right.

a b c d e f g h i a arc
a c b e d g f i h r(a) reverse arc
0 0 1 0 1 1 2 2 2 i(a) initial vertex

Project

Implement pregraphs in Python/SageMath. Take special care of
drawing loops and semiedges.



Polycirculants and their quotients.

G

B = G/α

For any polycirculant G and semiregular α
we define the quotient graph B = G/α in
an obvious way.
Even for simple graphs G the quotient may
have parallel edges, loops and even
semiedges.
• One can prove that the projection
p : G → B is a local isomorphism.
• However, not every local isomorphism
arises from a semiregular automorphism.



Polycirculants can be described by cyclic voltage graphs.

Two-vertex voltage graph defines the Petersen graph.



Loops vs semiedges in the quotient.

Example

α = (0123)



Brief review of voltage graphs.
For any semiregular group Γ acting on the vertices and arcs of a
simple graph G :

• Construct the quotient pregraph B defined on the vertex- and arc-
orbits.

• By choosing an arbitrary vertex on each vertex orbit construct the
transversal and assign identity to it. Since the action of Γ on each orbit is
regular, the choice of transversal uniquely defines the labelling of vertices
of G by group elements in such a way that on each orbit each group
element appears exactly once.

• Take any arc a of G leading from vertex u (labeled by g) via reverse
arc to vertex v (labeled by h) and label it by w = g−1h.

• Since the labels w are constant within the arc orbit they may be used
to label the arcs in the quotient. Moreover, the arc labels of reverse arcs
are inverse to each other. The quotient graph is an arc-labeled voltage
pregraph B.

• Usually we direct the edges of B and keep only the label of the source
arc.



The projection p : G → B is called a regular covering projection
and the opposite construction that constructs G from the voltage
graph is called a lift.

Voltages assigned to semiedges of B are involutions since a
semiedge with identity voltage would lift to semiedges. Also, if the
group Γ is cyclic, then there is at most one semiedge per vertex of
a voltage graph. For other groups more than one semiedge per
vertex are possible. If the order of Γ is odd, no semiedges are
possible.



Snarks

By renowned Vizing’s theorem the chromatic index, i.e.
edge-chromatic number χ′(G ) of a simple graph G is bounded
∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1.

The graphs with χ′(G ) = ∆(G ) are called class one whilst the
graphs with χ′(G ) = ∆(G ) + 1 are class two. Even for cubic
graphs, the class two graphs are very rare. Martin Gardner called
such graphs with some connectivity conditions snarks. There care
several definitions of snarks.

Nowadays a snark is usually defined as a cyclically 4-edge-connected
cubic graph of girth five or more of class two. That means it has no
3 edge-coloring and there can be no subset of three or fewer edges,
the removal of which would disconnect the graph into two
subgraphs each of which has at least one cycle.



Flower snarks

Discovered by Rufus Isaaks in 1975. One of the oldest snarks is the
so-called Flower Snark J5 that has been generalized to Flower
Snarks Jk , k odd by Isaacs in 1975. Until then only five snarks were
known.

Figure: The smallest flower snarks J5, J7, J9.



Description of Flower snarks

The description of Flower snarks Jm follows a clear pattern.

• There are four types of vertices.

• The inner rim is composed of vertices xi , i ∈ Zm.

• Together with the adjacencies xi ∼ xi+1 they form a cycle graph.
Addition is taken in Zm.

• The spokes xi ∼ yi connect the inner rim to the outer rim where
the vertices yi , i ∈ Zm are located.

• There are two more sets of m vertices on the outer rim:
ui , vi , i ∈ Zm attached to yi by edges yi ∼ ui and yi ∼ vi .

• To complete the description of Jm we have to add the edges
ui ∼ vi+1 and vi ∼ ui+1. By selecting m = 5, 7, 9, . . . the snarks
J5, J7, J9, . . . are obtained.



Flower graphs

Other values of m,m ≥ 3 may be used, producing cubic graphs Jm
that are not snarks. J3 is of class II but has girth 3, while Jm, m
even are of class I. The smallest cases of these graphs are depicted
in Figure 2. These graphs may be generalised even further by
introducing three parameters a, b, c ∈ Zm.

Figure: The smallest Flower graphs that are not snarks J3, J4, J6, J8.



Flower graphs – formal definition

Let J(m; a, b, c) be the graph with vertices xi , yi , ui , vi , i ∈ Zm and
edges:

xi ∼ xi+c

xi ∼ yi

yi ∼ ui

yi ∼ vi

ui ∼ vi+a

vi ∼ ui+b

Again, all additions of indices is done in Zm.



Flower graphs as tetracirculants over the parachute graph.
The above scheme is conveniently and concisely recorded by a
directed graph on 4 vertices, known as a voltage graph depicted in
this Figure.

Figure: The Parachute (directed) voltage graph J̃(m; a, b, c) describes
exactly the Flower graph J(m; a, b, c).



Flower graphs – Connectivity
We first correct an omission from a folklore belief that was also
stated in a recent paper. For instance, the Flower graph
J(6; 2, 3, 2) depicted in Figure 4 is connected even if neither 2 nor 3
is relatively prime with 6. This example contradict a proposition
from that paper where it is required for graph to be connected that
at least one a, b or c be relatively prime with m.

Figure: The graph J(6; 2, 3, 2) is connected.



Flower graphs – Connectivity

Proposition

Let gcd(m, a, b, c) = δ and let m = δm′, a = δa′, b = δb′, c = δc ′

The Flower graph J(m; a, b, c) is composed of δ isomorphic copies
of the connected Flower graph J(m′; a′, b′, c ′). Moreover,
J(m; a, b, c) is connected if and only if gcd(m, a, b, c) = 1.



Flower graphs – Biparteness
Proposition

A connected Flower graph J(m; a, b, c) is bipartite if and only if m
is even and all a, b, c are odd.

J(6; 1, 3, 1) is connected bipartite graph of girth 6. Hence it is a Levi graph of
a (123) configuration.

This proposition generalizes to arbitrary voltage graphs, provided we select zero
voltages along the edges of a spanning tree. The proofs of both propositions
assume that the vertices of the covering graph are placed on m layers, indexed
by elements from Zm in such a way that the whole spanning tree is placed in
the same layer.



Flower graphs – Girth

One can tell the value of girth of J(m; a, b, c).

Proposition

The girth g of a connected flower graph J(m; a, b, c) is equal to:
• g = 1 if and only if c = 0
• g = 2 if and only if g > 1 and 2c = 0 or a+ b = 0.
• g = 3 if and only if g > 2 and 3c = 0 or a = 0 or b = 0.
• g = 4 if and only if g > 3 and 4c = 0 or 2(a+ b) = 0.
• g = 5 if and only if g > 4 and 5c = 0.
• g = 6 if and only if g > 5 and 6c = 0 or 2a = 0 or 2b = 0 or
a± c = 0 or b ± c = 0.
• g = 7 if and only if g > 6 and 7c = 0 or a± 2c = 0 or
b ± 2c = 0.
• g = 8 if and only if g > 7.
Arithmetic is in Zm.



Generating Flower graphs - Isomorphism

When generating J(m; a, b, c), there are some obvious restrictions
on the parameters:

0 ≤ a ≤ b ≤ m − a

1 ≤ c < m/2

Triple (a, b, c) satisfying the conditions above will be called in basic
form.

We have to consider only canonical form of (a, b, c). For any
k ∈ Z∗

m consider (ka, kb, kc), transform it to the basic form and
keep only the minimal triple. For a given m we consider triples
(a, b, c) and (a′, b′, c ′) equivalent if and only if they have the same
canonical form.



Arithmetic automorphisms and Ádam-like conjecture for
Flower graphs.

Note that any two Flower graphs J(m; a, b, c) and J(m, a′, b′, c ′)
with equivalent triples (a, b, c) and (a′, b′, c ′) are arithmetically
isomorphic.

However, it may be the case that two different canonical triples
give rise to isomorphic graphs. In other words, two Flower graphs
may be isomorphic without being arithmetically isomorphic. Such a
pair would give a counterexample to Ádam-like conjecture for
Flower graphs.

We have checked this by computer. Indeed, the Ádam-like
conjecture for Flower graphs fails. The smallest counterexample has
been found for m = 16 and this is the only counterexample up to
m = 20.



Enumeration of Flower graphs J(m; a, b, c), 3 ≤ m ≤ 20

m (a) (b)

3 1 1
4 2 2
5 4 4
6 11 11
7 9 9
8 18 18
9 21 21
10 36 36
11 25 25
12 76 76
13 36 36
14 75 75
15 88 88
16 92 91
17 64 64
18 167 167
19 81 81
20 194 194

(a) . . . Number of Flower graphs
up to arithmetic isomorphism.
(b) . . . Number of Flower graphs
up to isomorphism.

Remark
The first counterexample appears
for m = 16. The entries for
m = 16 differ by one.



The graphs J(16; 1, 7, 2) and J(16; 1, 7, 6)

The graphs J(16; 1, 7, 2) and J(16; 1, 7, 6) are isomorphic but not
arithmetically isomorphic. So far this is the only known
counterexample.



Generating Flower graphs J(m; a, b, c), 3 ≤ m ≤ 11

We have generated all non-isomorphic Flower graphs up to m = 11,
however, the list is too big to be included here. We list for each
girth only one example of smallest graphs.

m a b c girth
3 1 1 1 3
4 1 1 1 4
5 1 1 1 5
6 1 1 1 6
7 1 2 3 7
11 1 2 4 8



Flower graphs of girth 8 exist

Figure: J(11; 1, 2, 4) is the smallest Flower graph of girth 8.



Two questions about symmetry

Question
What can one say about the automorphism group of Flower graphs?

Question
What can one say about the polycirculant nature of Flower graphs?



What can one say about the automorphism group of Flower
graphs?

• Every Flower graph with parameter m admits a dihedral
symmetry. Its automorphism group contains Dm as subgroup.

• It has three, two or one vertex orbit.

Let Jm = J(m; 1, 1, 1).

• All graphs Jm, m odd have three orbits..

• All graphs Jm, m even have two orbits..

• Most three-orbit flower graphs J(m; a, b, c) have small
automorphism groups: either Dm or D2m. It seems no other Flower
graph has one of these automorphism groups.



One-orbit alias vertex-transitive connected Flower graphs up
to m = 20

m a b c girth f group arc-trans?
6 1 3 1 6 12 S4 x S3 True
6 2 3 1 6 4 C2 x S4 False
9 1 3 4 7 4 ((C2 x C2) : C9) : C2 False
12 1 3 1 6 4 GL(2,3) : C2 False
12 1 6 2 6 4 GL(2,3) : C2 False
12 1 9 5 8 12 ((C3 x SL(2,3)) : C2) : C2 True
12 2 3 5 7 4 (C2 x S4) : C2 False
12 3 4 1 8 4 (C2 x S4) : C2 False
15 1 6 7 7 4 C5 : S4 False
18 1 3 5 8 4 C2 x (((C2 x C2) : C9) : C2) False
18 1 12 4 8 4 C2 x (((C2 x C2) : C9) : C2) False
18 2 15 1 7 4 C2 x (((C2 x C2) : C9) : C2) False

• Among connected vertex-transitive Flower graphs up to m = 20
only two are arc-transitive: the Nauru graph G (12, 5) and the
ADAM graph G (24, 5).



Cayley graphs

Definition (Sabidussi (1958))

Graph G is a Cayley graph for group Γ if Γ ≤ AutG acts regularly
(=semiregularly with one vertex orbit) on the vertex set of G .

Question
Are there any vertex-transitive Flower graphs that are not Cayley
graphs?

There are well-known examples of vertex-transitive graphs that are
not Cayley; e.g. G (5, 2) - Petersen graph or G (12, 2) Dodecahedral
graph.



Two problems on vertex-transitive Flower graphs

• Among connected vertex-transitive Flower graphs up to m = 20
only two are arc-transitive: the Nauru graph G (12, 5) and the
ADAM graph G (24, 5).

Problem
Classify vertex-transitive, connected Flower graphs.

Not sure how hard it is. Subproblem of Classify vertex-transitive
connected tetracirculants.

Solved for tricirculants by Potočnik and Toledo (2020).

Problem
How many connected Flower graphs are arc-transitive?.

Should follow from classification of arc-transitive tetracirculants by
Frelih and Kutnar (2013).



What can one say about the polycirculant nature of Flower
graphs?

• Some Flower graphs have only the parachute graph as a
quotient.

• Some Flower graphs are bicirculants. For instance, J(6; 1, 3, 1) is
isomorphic to the generalized Petersen graph G (12, 5), the Nauru
graph and J(12; 1, 9, 5) is isomorphic to G (24, 5), the ADAM
graph.

Both Nauru and Adam graph are polycirculants in at least two
ways. A natural problem arises:

Problem
Given a Flower graph J(m; a, b, c), in how many ways it can be
represented as a polycirculant?



Polycirculant signature of Flower graphs.
m a b c orbits (semireg, polycirc) polycirc signature
3 1 1 1 [1, 1, 2] (1, 1) 3
4 1 1 1 [3, 1] (9, 6) 2442

4 1 2 1 [1, 1, 2] (4, 3) 2241

5 1 1 1 [1, 1, 2] (1, 1) 51

5 1 1 2 [1, 1, 2] (1, 1) 51

5 1 2 1 [1, 1, 2] (1, 1) 51

5 1 2 2 [1, 1, 2] (1, 1) 51

6 1 1 1 [3, 1] (12, 9) 243263

6 1 1 2 [1, 1, 2] (9, 7) 243162

6 1 2 1 [1, 1, 2] (5, 4) 223161

6 1 2 2 [1, 1, 2] (5, 4) 223161

6 1 3 1 [4] (35, 12) 24324263121

6 1 3 2 [1, 1, 2] (5, 4) 223161

6 1 4 1 [1, 1, 2] (5, 4) 223161

6 1 4 2 [1, 1, 2] (5, 4) 223161

6 2 2 1 [1, 1, 2] (5, 4) 223161

6 2 3 1 [4] (20, 8]) 24314261

6 2 3 2 [1, 1, 2] (5, 4) 223161

• orbits . . . list of vertex orbits sizes, expressed as multiples of 2m.

• (semireg, polycirc) . . . (number of non-conjugate semiregular subgroups,
number of non-conjugate semiregular cyclic subgroups)

• polycirc signature . . . formal product of factors k r where r represents the
number of non-conjugate semi-regular Zk in the automorphism group..



Nauru graph vs. ADAM graph

Nauru G (12, 5)
24324263121

bicirculant
tetracirculant in three ways

ADAM G (24, 5)
2332426382122241

bicirculant
tetracirculant in two ways



Adjacency list with coordinates, a new format in the HoG

In this format, the first line should contain only the number of vertices of
the graph. Next, each line describes the position of a vertex and its
neighbourhood. Vertices are given in increasing index starting from zero.
The values are separated by spaces. The line starts with two floating
point numbers separated by a space. These are the coordinates of the
vertex in the plane with the first one being the x-coordinate and the
second one being the y-coordinate. This is followed by a list of all
sequence numbers of the vertices that are connected by an edge to the
reference vertex. Sequence numbers are expressed in decimal notation
and are separated by spaces. The resulting file is a text file consisting of
ASCII characters only.

In case of importing a new drawing to the database, the given drawing
will be transformed to occupy a square between coordinates -1.5 to 1.5.
The aspect ratio will be preserved. If the graph contains more than one
vertex, make sure the area spanned by the drawing is large enough (i.e.,
that the vertices are not all at the same place). (House of Graphs)



The interface in Sage that outputs a graph suitable for HoG

def to_HoG(gr, fname="fname.txt", digs=6):
""" After relabelling of vertices , graph gr
is stored in file fname as ’adjacency list
with coordinates ’ for House of Graphs
where digs determine precision for coordinates."""
n = gr.order (); pos = gr.get_pos ()
verts = gr.vertices ()
dic = {x:i for i,x in enumerate(verts)}
with open(fname ,"w") as f:

print(n,file =f)
for i,v in enumerate(verts):

(x,y) = pos[v]
print(N(x,digits=digs),N(y,digs = digits),

end = " ",file
=f)

lin = [dic[u] for u in gr.neighbors(v)]
for t in lin:

print(t, end = " ",file=f)
print(file=f)



New drawing of Nauru graph J(6, 1, 3, 1) = G (12, 5) for the
House of Graphs

24
1.00000 0.000000 6 1 5
0.500000 0.866025 0 7 2
-0.500000 0.866025 1 8 3
-1.00000 0.000000 2 9 4
-0.500000 -0.866025 3 10 5
0.500000 -0.866025 0 4 11
5.00000 0.000000 0 18 12
2.50000 4.33013 1 19 13
-2.50000 4.33013 2 20 14
-5.00000 0.000000 21 3 15
-2.50000 -4.33013 16 22 4
2.50000 -4.33013 17 23 5
4.69846 1.71010 6 19 21
0.868241 4.92404 7 20 22
-3.83022 3.21394 8 21 23
-4.69846 -1.71010 18 22 9
-0.868241 -4.92404 19 23 10
3.83022 -3.21394 18 20 11
4.69846 -1.71010 6 17 15
3.83022 3.21394 16 7 12
-0.868241 4.92404 17 8 13
-4.69846 1.71010 9 12 14
-3.83022 -3.21394 10 13 15
0.868241 -4.92404 16 11 14



New drawing of ADAM graph J(12, 1, 9, 5) = G (24, 5) for
the House of Graphs



Engineering project No. 2.

Sometimes polycirculants drawn by a
computer program are not optimal.
For instance, the inner radius of the
Flower graphs on the right is too
small. We need a graph editor that
would allow the user to drag the
whole inner circle and not just each
vertex separately.

Project
Upgrade an existing graph editor, such as the one of HoG that
would allow dragging the whole orbits.



Thank you!


