Characterizing bipartite distance-regularized graphs with vertices of eccentricity at most 4

Marija Maksimović

Faculty of Mathematics University of Rijeka, Croatia

joint work with Blas Fernandes and Sanja Rukavina

CroCoDays 2024

Zagreb, September 19-20

Terminology and notations

In this talk, $\Gamma = (X, \mathcal{R})$ will denote a finite, undirected, connected graph, without loops and multiple edges.

Definition

Let $\Gamma = (X, \mathcal{R})$ and $x, y \in X$.

- The distance between x and y, denoted by ∂(x, y), is the length of a shortest walk from x to y.
- Eccentricity of x is the greatest distance between x and any other vertex. That is ε(x) = max ∂(x, z).
- Diameter of Γ : $D = \max{\{\varepsilon(x) \mid x \in X\}}$.

Definition

Let $\Gamma = (X, \mathcal{R})$.

 For an integer i we represent with Γ_i(x) the collection of all vertices that are at distance i from vertex x. That is

$$\Gamma_i(x) = \{ y \in X \mid \partial(x, y) = i \}.$$

•
$$\Gamma(x) = \Gamma_1(x).$$

- Γ is k-regular iff $|\Gamma(x)| = k$ for every vertex $x \in X$.
- The collection of all the subsets $\Gamma_i(x)$, for $0 \le i \le \varepsilon(x)$, makes up a partition of the vertex set X that is called the **distance partition of** Γ relative to x.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

(Y,Y')-bipartite graph

Definition

A **bipartite** (or (Y, Y')-**bipartite**) graph is a graph whose vertex set can be partitioned into two subsets Y and Y' such that each edge has one end in Y and one end in Y'. The vertex sets Y and Y' in such a partition are called **color partitions** of the graph.

Biregular graph

Definition

A bipartite graph Γ with color partitions Y and Y' is said to be **biregular** if the valency of a vertex only depends on the color partition where it belongs to.

E

◆□▶ ◆□▶ ◆□▶ ◆□▶

990

590

문 문 문

・ロト ・回ト ・回ト

э

◆□▶ ◆□▶ ◆□▶ ◆□▶

E

◆ロト ◆聞ト ◆ヨト ◆ヨト

Local regularity property

Let $x \in X$. Assume that $y \in \Gamma_i(x)$ for some $0 \le i \le \varepsilon(x)$ and let z be a neighbour of y. Then

$$\partial(x,z) \in \{i-1,i,i+1\}$$

and so $z \in \Gamma_{i-1}(x) \cup \Gamma_i(x) \cup \Gamma_{i+1}(x)$. For $y \in \Gamma_i(x)$ we therefore define the following numbers:

$$a_i(x,y) = |\Gamma_i(x) \cap \Gamma(y)|, \qquad b_i(x,y) = |\Gamma_{i+1}(x) \cap \Gamma(y)|,$$
$$c_i(x,y) = |\Gamma_{i-1}(x) \cap \Gamma(y)|.$$

イロト イポト イヨト イヨト

Local regularity property

Definition (GODSIL AND SHAWE-TAYLOR, 1987.)

We say that $x \in X$ is **distance-regularized** if the numbers $a_i(x, y), b_i(x, y)$ and $c_i(x, y)$ do not depend on the choice of $y \in \Gamma_i(x), (0 \le i \le \varepsilon(x))$.

In this case, the numbers $a_i(x, y)$, $b_i(x, y)$ and $c_i(x, y)$ are simply denoted by $a_i(x)$, $b_i(x)$ and $c_i(x)$ respectively, and are called the **intersection** numbers of x.

Image: A math a math

Let u be the vertex of Petersen graph.

 $a_0 = 0, \quad a_1 = 0, \quad a_2 = 2$ $b_0 = 3, \quad b_1 = 2, \quad b_2 = 0$ $c_0 = 0, \quad c_1 = 1, \quad c_2 = 1$

u is distance regularized.

- 4 目 ト - 3 ト - 4

3

Let u be the vertex of Petersen graph.

$$a_0 = 0, \quad a_1 = 0, \quad a_2 = 2$$

 $b_0 = 3, \quad b_1 = 2, \quad b_2 = 0$
 $c_0 = 0, \quad c_1 = 1, \quad c_2 = 1$

u is distance regularized.

Image: A match a ma

Let u be the vertex of Petersen graph.

$$a_0 = 0, \quad a_1 = 0, \quad a_2 = 2$$

 $b_0 = 3, \quad b_1 = 2, \quad b_2 = 0$
 $c_0 = 0, \quad c_1 = 1, \quad c_2 = 1$

 \boldsymbol{u} is distance regularized.

Distance-regularized graphs

Definition

- A connected graph in which every vertex is distance-regularized is called a **distance-regularized** graph.
- A **distance-regular graph** is distance-regularized graph where all its vertices have the same intersection array
- A distance-regularized graph is said to be distance-biregular if
 - is bipartite
 - vertices in the same color partition have the same intersection numbers
 - vertices in the different color partition have different intersection numbers.

Theorem (GODSIL AND SHAWE-TAYLOR, 1987.)

Every distance-regularized graph is either distance-regular or distance-biregular.

イロト イポト イヨト イ

Distance-semiregular graphs with respect to Y

Definition

A connected bipartite graph Γ with color partitions Y and Y' is called **distance-semiregular with respect to** Y if it is distance-regular around all vertices in Y, with the same parameters.

Design

Definition

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ such. that

•
$$|\mathcal{P}| = v$$
, $|\mathcal{B}| = b$,

- each block $B \in \mathcal{B}$ is incident with exactly k points,
- every t-tuple of distinct points from $\mathcal P$ is incident with exactly λ blocks
- each point is incident with exactly r blocks

is called a t- (v, b, r, k, λ) design or a t- (v, k, λ) design.

Definition

Let x and y be non-negative integers with x < y. A design \mathcal{D} is called a (proper) **quasi-symmetric design** with intersection numbers x and y if any two distinct blocks of \mathcal{D} intersect in either x or y points, and both intersection numbers are realized.

3

イロト イヨト イヨト イヨト

Incidence graph of a design

Definition

The incidence graph of a design $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ is a $(\mathcal{P}, \mathcal{B})$ -bipartite graph where the point $x \in \mathcal{P}$ is adjacent to the block $B \in \mathcal{B}$ if and only if x is incident with B.

$$\begin{split} \mathcal{P} &= \{1,2,3,4,5,6,7\} \\ \mathcal{B} &= \{\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,7\}, \\ &\{1,5,6\},\{2,6,7\},\{1,3,7\}\} \end{split}$$

900

 $\mathsf{Example}_{_{\Gamma_0(1)}}$

$$a_0 = 0, \quad a_1 = 0, \quad a_2 = 0, \quad a_3 = 0$$

$$b_0 = 3, \quad b_1 = 2, \quad b_2 = 2, \quad b_3 = 0$$

$$c_0 = 0, \quad c_1 = 1, \quad c_2 = 1, \quad c_3 = 3$$

19 / 28

Bipartite distance-regularized graphs (BDRG)

If $\Gamma = (X, \mathcal{R})$ is (Y, Y')-bipartite distance-regularized graph then Γ is either a bipartite distance-regular graph or Γ is a distance-biregular graph.

Let $\Gamma = (X, \mathcal{R})$ be bipartite distance-regularized graph. Then

•
$$a_i(x) = 0$$
 for $0 \le i \le \varepsilon(x)$

- All vertices from Y (Y', respectively) have the same eccentricity D (D', respectively)
- All vertices from Y(Y'), respectively) have the same the same valency k (k', respectively)
- For $x \in Y$, $y \in Y'$ and an integer *i* we abbreviate $c_i := c_i(x)$, $b_i := b_i(x), c'_i := c_i(y)$ and $b'_i := b_i(y)$.

Also it holds:

Theorem (DELORME, 1994.) The difference D - D' is at most 1. If D < D' then D is odd. ・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日 5th CroCoDays 20 / 28

BDRG with $D\leq 3$

- D = 1 then there is one-to-one correspondence between the incidence graph of 1-(1, 1, b) designs and Γ .
- D = 2 then there exists a one-to-one correspondence between the incidence graphs of 2-(v, v, b) designs and Γ .
- D = 3 then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
 - incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
 - incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with D = 3 and D' = 4.
- What about D = 4?
 - B. Fernández, M.Maksimović, S. Rukavina, *Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4*, Bull. Malays. Math. Sci. Soc. (2), 47, 2024.

BDRG with $D\leq 3$

- D = 1 then there is one-to-one correspondence between the incidence graph of 1-(1, 1, b) designs and Γ .
- D = 2 then there exists a one-to-one correspondence between the incidence graphs of 2-(v, v, b) designs and Γ .
- D = 3 then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
 - incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
 - incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with D = 3 and D' = 4.
- What about D = 4?
 - B. Fernández, M.Maksimović, S. Rukavina, *Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4*, Bull. Malays. Math. Sci. Soc. (2), 47, 2024.

BDRG with $D \leq 3$

- D = 1 then there is one-to-one correspondence between the incidence graph of 1-(1, 1, b) designs and Γ .
- D = 2 then there exists a one-to-one correspondence between the incidence graphs of 2-(v, v, b) designs and Γ .
- D = 3 then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
 - incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
 - incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with D = 3 and D' = 4.
- What about D = 4?
 - B. Fernández, M.Maksimović, S. Rukavina, *Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4*, Bull. Malays. Math. Sci. Soc. (2), 47, 2024.

BDRG with $D \leq 3$

- D = 1 then there is one-to-one correspondence between the incidence graph of 1-(1, 1, b) designs and Γ .
- D = 2 then there exists a one-to-one correspondence between the incidence graphs of 2-(v, v, b) designs and Γ .
- D = 3 then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
 - incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
 - incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with D = 3 and D' = 4.
- What about D = 4?
 - B. Fernández, M.Maksimović, S. Rukavina, *Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4*, Bull. Malays. Math. Sci. Soc. (2), 47, 2024.

BDRG with $D \leq 3$

- D = 1 then there is one-to-one correspondence between the incidence graph of 1-(1, 1, b) designs and Γ .
- D = 2 then there exists a one-to-one correspondence between the incidence graphs of 2-(v, v, b) designs and Γ .
- D = 3 then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
 - incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
 - incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with D = 3 and D' = 4.
- What about D = 4?
 - B. Fernández, M.Maksimović, S. Rukavina, *Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4*, Bull. Malays. Math. Sci. Soc. (2), 47, 2024.

SPBIBD

Definition

Let \mathcal{D} be a 1- (v, b, r, k, λ) design and let (s, t) be a pair of non-negative integers. A flag (a non-flag) of \mathcal{D} is a point-block pair (p, B) such that $p \in B$ $(p \notin B)$. We say that \mathcal{D} is a **special partially balanced incomplete block design** (SPBIBD for short) of type (s, t) if there are constants λ_1 and λ_2 with the following properties:

- (1) Any two points are contained in either λ_1 or λ_2 blocks.
- (2) If a point-block pair (p, B) is a flag, then the number of points in B which occur with p in λ_1 blocks is s.
- (3) If a point-block pair (p, B) is a non-flag, then the number of points in B which occur with p in λ_1 blocks is t.

In this case, we say that \mathcal{D} is a $(v, b, r, k, \lambda_1, \lambda_2)$ SPBIBD of type (s, t).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

The incidence graph of a SPBIBD

Lemma

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a $(v, b, r, k, \lambda_1, 0)$ SPBIBD of type (k - 1, t). Let Γ denote the incidence graph of \mathcal{D} . Then, every vertex $p \in \mathcal{P}$ has eccentricity 4 in Γ .

Lemma

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a $(v, b, r, k, \lambda_1, 0)$ SPBIBD of type (k - 1, t). Let Γ denote the incidence graph of \mathcal{D} . Then, every vertex $p \in \mathcal{P}$ is distance-regularized. Moreover, Γ is distance-semiregular with respect to \mathcal{P} with the following intersection numbers:

$$c_0 = 0, \quad c_1 = 1, \qquad c_2 = \lambda_1, \qquad c_3 = t, \qquad c_4 = r.$$

 $b_0 = r, \quad b_1 = k - 1, \qquad b_2 = r - \lambda_1, \qquad b_3 = k - t \qquad b_4 = 0.$

イロト イ団ト イヨト イヨト

The incidence graph of a SPBIBD

Lemma

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a quasi-symmetric $(v, b, r, k, \lambda_1, 0)$ SPBIBD of type (k - 1, t) with intersection numbers x = 0 and y > 0. Let Γ denote the incidence graph of \mathcal{D} . Then, every vertex $B \in \mathcal{B}$ has eccentricity 4 in Γ .

▲□► ▲ □► ▲

The incidence graph of a SPBIBD

Theorem

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a quasi-symmetric $(v, b, r, k, \lambda_1, 0)$ SPBIBD of type (k-1,t) with intersection numbers x = 0 and y > 0. Let Γ denote the incidence graph of \mathcal{D} . Then, Γ is a $(\mathcal{P}, \mathcal{B})$ -bipartite distance-regularized graph. Moreover, every vertex $p \in \mathcal{P}$ has eccentricity equals 4 and the following intersection numbers:

$$\begin{array}{rcl} c_0 &=& 0, & c_1 = 1, & c_2 = \lambda_1, & c_3 = t, & c_4 = r. \\ b_0 &=& r, & b_1 = k - 1, & b_2 = r - \lambda_1, & b_3 = k - t & b_4 = 0. \end{array}$$

In addition, every vertex $B \in \mathcal{B}$ has eccentricity equals 4 and the following intersection numbers:

$$\begin{array}{rcl} c_0' &=& 0, & c_1' = 1, & c_2' = y, & c_3' = \frac{t\lambda_1}{y}, & c_4' = k. \\ b_0' &=& k, & b_1' = r-1, & b_2' = k-y, & b_3' = r - \frac{t\lambda_1}{y}, & b_4' = 0. \end{array}$$

Distance-semiregular graphs and SPBIBDs

Lemma

Let Γ be a (Y, Y')-distance semiregular graph with respect to Y. Assume every vertex in Y has eccentricity D = 4. Let $b_i, c_i \ (0 \le i \le 4)$ denote the intersection numbers of every vertex in Y. Then, Γ is the incidence graph of a $(1 + \frac{b_0b_1}{c_2} + \frac{b_0b_1b_2b_3}{c_2c_3c_4}, b_0 + \frac{b_0b_1b_2}{c_2c_3}, b'_0, b_0, c_2, 0)$ SPBIBD of type (b_1, c_3) .

Theorem

There is a one-to-one correspondence between the incidence graph of SPBIBDs with parameters $(v, b, r, k, \lambda_1, 0)$ of type (k - 1, t) and distance-semiregular graphs with distance-regularized vertices of eccentricity 4.

イロト 不得下 イヨト イヨト 二日

Lemma

Let Γ be a (Y, Y')-bipartite distance-regularized graph with vertices of eccentricity 4. Let $b_i, c_i; b'_i, c'_i \ (0 \le i \le 4)$ denote the intersection numbers of every vertex in Y and in Y' respectively. Then, Γ is the incidence graph of a $(1 + \frac{b_0b_1}{c_2} + \frac{b_0b_1b_2b_3}{c_2c_3c_4}, b_0 + \frac{b_0b_1b_2}{c_2c_3}, b'_0, b_0, c_2, 0)$ SPBIBD of type (b_1, c_3) which is quasi-symmetric with intersection numbers x = 0 and $y = c'_2$.

Theorem

There is a one-to-one correspondence between the incidence graph of quasi-symmetric SPBIBDs with parameters $(v, b, r, k, \lambda_1, 0)$ of type (k-1,t) with intersection numbers x = 0 and y > 0, and bipartite distance-regularized graphs with vertices of eccentricity 4.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

THANK YOU!

M. Maksimović (Faculty of Mathematics)

E

990

イロト イヨト イヨト イヨト