Characterizing bipartite distance-regularized graphs with vertices of eccentricity at most 4

Marija Maksimović

Faculty of Mathematics University of Rijeka, Croatia

joint work with Blas Fernandes and Sanja Rukavina

CroCoDays 2024

Zagreb, September 19-20

4 **E** F

 QQ

Terminology and notations

In this talk, $\Gamma = (X, \mathcal{R})$ will denote a finite, undirected, connected graph, without loops and multiple edges.

Definition

Let $\Gamma = (X, \mathcal{R})$ and $x, y \in X$.

- The distance between x and y, denoted by $\partial(x, y)$, is the length of a shortest walk from x to y .
- Eccentricity of x is the greatest distance between x and any other vertex. That is $\varepsilon(x) = \max_{z \in X} \partial(x, z)$.
- Diameter of $\Gamma: D = \max\{\varepsilon(x) \mid x \in X\}.$

Definition

Let $\Gamma = (X,\mathcal{R})$.

• For an integer i we represent with $\Gamma_i(x)$ the collection of all vertices that are at distance i from vertex x. That is

$$
\Gamma_i(x) = \{ y \in X \mid \partial(x, y) = i \}.
$$

•
$$
\Gamma(x) = \Gamma_1(x)
$$
.

- Γ is k-regular iff $|\Gamma(x)| = k$ for every vertex $x \in X$.
- The collection of all the subsets $\Gamma_i(x)$, for $0 \leq i \leq \varepsilon(x)$, makes up a partition of the vertex set X that is called the **distance partition of** Γ relative to x .

 OQ

イロト イ押ト イヨト イ

(Y, Y') -bipartite graph

Definition

A bipartite (or (Y, Y') -bipartite) graph is a graph whose vertex set can be partitioned into two subsets Y and Y' such that each edge has one end in Y and one end in $Y'.$ The vertex sets Y and Y' in such a partition are called color partitions of the graph.

Biregular graph

Definition

A bipartite graph Γ with color partitions Y and Y' is said to be biregular if the valency of a vertex only depends on the color partition where it belongs to.

 \leftarrow \Box \rightarrow

M. Maksimović (Faculty of Mathematics) 6 / 28

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶

 $\circledcirc \circledcirc \circledcirc$

Ξ $\vert \cdot \vert$ \prec

 $\leftarrow \quad \square \quad \vdash$

∢ 伊 ▶ → 毛

重

 $\circlearrowright\circ \varphi$

重

 OQ

 -4 \equiv $+$

イロト イ団ト イミト

重

 OQ

 -4 \equiv $+$

イロト イ部ト イミト

Local regularity property

Let $x \in X$. Assume that $y \in \Gamma_i(x)$ for some $0 \leq i \leq \varepsilon(x)$ and let z be a neighbour of y . Then

$$
\partial(x, z) \in \{i - 1, i, i + 1\}
$$

and so $z \in \Gamma_{i-1}(x) \cup \Gamma_i(x) \cup \Gamma_{i+1}(x)$. For $y \in \Gamma_i(x)$ we therefore define the following numbers:

$$
a_i(x, y) = |\Gamma_i(x) \cap \Gamma(y)|, \qquad b_i(x, y) = |\Gamma_{i+1}(x) \cap \Gamma(y)|,
$$

$$
c_i(x, y) = |\Gamma_{i-1}(x) \cap \Gamma(y)|.
$$

 QQ

イロト イ押ト イヨト イヨト

Local regularity property

Definition (GODSIL AND SHAWE-TAYLOR, 1987.)

We say that $x \in X$ is **distance-regularized** if the numbers $a_i(x, y), b_i(x, y)$ and $c_i(x, y)$ do not depend on the choice of $y \in \Gamma_i(x)$, $(0 \leq i \leq \varepsilon(x))$.

In this case, the numbers $a_i(x, y), b_i(x, y)$ and $c_i(x, y)$ are simply denoted by $a_i(x)$, $b_i(x)$ and $c_i(x)$ respectively, and are called the **intersection** numbers of x .

4 何 下 ∍

Let u be the vertex of Petersen graph.

 u is distance regularized.

K ロト K 何 ト K 日

 \rightarrow

Þ

Let u be the vertex of Petersen graph.

$$
a_0 = 0,
$$
 $a_1 = 0,$ $a_2 = 2$
\n $b_0 = 3,$ $b_1 = 2,$ $b_2 = 0$
\n $c_0 = 0,$ $c_1 = 1,$ $c_2 = 1$

 u is distance regularized.

 \mathcal{A} $\Box \Box \mathcal{B}$ \rightarrow \mathcal{A}

÷

 \leftarrow \Box \rightarrow

Þ

Let u be the vertex of Petersen graph.

$$
a_0 = 0,
$$
 $a_1 = 0,$ $a_2 = 2$
\n $b_0 = 3,$ $b_1 = 2,$ $b_2 = 0$
\n $c_0 = 0,$ $c_1 = 1,$ $c_2 = 1$

 u is distance regularized.

同 》 4

 $\leftarrow \Box$ \rightarrow

Þ

Distance-regularized graphs

Definition

- A connected graph in which every vertex is distance-regularized is called a distance-regularized graph.
- A distance-regular graph is distance-regularized graph where all its vertices have the same intersection array
- A distance-regularized graph is said to be **distance-biregular** if
	- is bipartite
	- vertices in the same color partition have the same intersection numbers
	- vertices in the different color partition have different intersection numbers.

Theorem (GODSIL AND SHAWE-TAYLOR, 1987.)

Every distance-regularized graph is either distance-regular or distance-biregular.

 OQ

イロト イ母ト イヨト

Distance-semiregular graphs with respect to Y

Definition

A connected bipartite graph Γ with color partitions Y and Y' is called distance-semiregular with respect to Y if it is distance-regular around all vertices in Y , with the same parameters.

Design

Definition

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ such. that

•
$$
|\mathcal{P}| = v, |\mathcal{B}| = b,
$$

- each block $B \in \mathcal{B}$ is incident with exactly k points,
- every *t*-tuple of distinct points from P is incident with exactly λ blocks
- each point is incident with exactly r blocks

is called a t - (v, b, r, k, λ) design or a t - (v, k, λ) design.

Definition

Let x and y be non-negative integers with $x < y$. A design D is called a (proper) **quasi-symmetric design** with intersection numbers x and y if any two distinct blocks of D intersect in either x or y points, and both intersection numbers are realized.

E

 OQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Incidence graph of a design

Definition

The incidence graph of a design $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ is a $(\mathcal{P}, \mathcal{B})$ -bipartite graph where the point $x \in \mathcal{P}$ is adjacent to the block $B \in \mathcal{B}$ if and only if x is incident with B.

 QQ

$$
\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\}
$$

$$
\mathcal{B} = \{\{1, 2, 4\}, \{2, 3, 5\}, \{3, 4, 6\}, \{4, 5, 7\}, \{1, 5, 6\}, \{2, 6, 7\}, \{1, 3, 7\}\}
$$

 $\mathcal{L} \circ \mathcal{L} \circ \mathcal{L}$

《ロ》 《個》 《결》 《결》 《理》

$$
a_0 = 0,
$$
 $a_1 = 0,$ $a_2 = 0,$ $a_3 = 0$
\n $b_0 = 3,$ $b_1 = 2,$ $b_2 = 2,$ $b_3 = 0$
\n $c_0 = 0,$ $c_1 = 1,$ $c_2 = 1,$ $c_3 = 3$

イロト (個) イミト (ミ) 一毛

 $\circledcirc \circledcirc \circledcirc$

Bipartite distance-regularized graphs (BDRG)

If $\Gamma=(X,\mathcal{R})$ is (Y,Y') -bipartite distance-regularized graph then Γ is either a bipartite distance-regular graph or Γ is a distance-biregular graph.

Let $\Gamma = (X, \mathcal{R})$ be bipartite distance-regularized graph. Then

•
$$
a_i(x) = 0
$$
 for $0 \le i \le \varepsilon(x)$

- All vertices from Y $(Y'$, respectively) have the same eccentricity D $(D'$, respectively)
- All vertices from Y $(Y'$, respectively) have the same the same valency k $(k'$, respectively)
- For $x \in Y$, $y \in Y'$ and an integer i we abbreviate $c_i := c_i(x)$, $b_i := b_i(x)$, $c'_i := c_i(y)$ and $b'_i := b_i(y)$.

Also it holds:

Let Γ be (Y, Y') -bipartite distance-regularized graph with:

- $D = 1$ then there is one-to-one correspondence between the incidence graph of $1-(1, 1, b)$ designs and Γ .
- $D = 2$ then there exists a one-to-one correspondence between the incidence graphs of $2-(v, v, b)$ designs and Γ .
- $D=3$ then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
	- incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
	- incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with $D = 3$ and $D' = 4$.
- What about $D = 4$?
	- B. Fernández, M.Maksimović, S. Rukavina, Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4, Bull. Malays. Math. Sci. Soc. (2), 47, 2024. $4 \quad \Box \rightarrow 4 \quad \Box \rightarrow 4 \quad \bar{\equiv} \rightarrow 4 \quad \bar{\equiv} \rightarrow$ - 2

Let Γ be (Y, Y') -bipartite distance-regularized graph with:

- $D = 1$ then there is one-to-one correspondence between the incidence graph of $1-(1, 1, b)$ designs and Γ .
- $D = 2$ then there exists a one-to-one correspondence between the incidence graphs of $2-(v, v, b)$ designs and Γ .
- $D=3$ then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
	- incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
	- incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with $D = 3$ and $D' = 4$.
- What about $D = 4$?
	- B. Fernández, M.Maksimović, S. Rukavina, Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4, Bull. Malays. Math. Sci. Soc. (2), 47, 2024. $4 \quad \Box \rightarrow 4 \quad \Box \rightarrow 4 \quad \bar{\equiv} \rightarrow 4 \quad \bar{\equiv} \rightarrow$ - 2

Let Γ be (Y, Y') -bipartite distance-regularized graph with:

- $D = 1$ then there is one-to-one correspondence between the incidence graph of $1-(1,1,b)$ designs and Γ .
- $D = 2$ then there exists a one-to-one correspondence between the incidence graphs of $2-(v, v, b)$ designs and Γ .
- $D=3$ then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
	- incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
	- incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with $D = 3$ and $D' = 4$.
- What about $D = 4$?
	- B. Fernández, M.Maksimović, S. Rukavina, Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4, Bull. Malays. Math. Sci. Soc. (2), 47, 2024. $\mathcal{A} \subseteq \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$ - 2

Let Γ be (Y, Y') -bipartite distance-regularized graph with:

- $D = 1$ then there is one-to-one correspondence between the incidence graph of $1-(1,1,b)$ designs and Γ .
- $D = 2$ then there exists a one-to-one correspondence between the incidence graphs of $2-(v, v, b)$ designs and Γ .
- $D = 3$ then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
	- incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
	- incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with $D = 3$ and $D' = 4$.
- What about $D = 4$?
	- B. Fernández, M.Maksimović, S. Rukavina, Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4, Bull. Malays. Math. Sci. Soc. (2), 47, 2024. 4 ロ > 4 伊 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q*

Let Γ be (Y, Y') -bipartite distance-regularized graph with:

- $D = 1$ then there is one-to-one correspondence between the incidence graph of $1-(1,1,b)$ designs and Γ .
- $D = 2$ then there exists a one-to-one correspondence between the incidence graphs of $2-(v, v, b)$ designs and Γ .
- $D=3$ then there is one-to-one correspondence between the incidence graphs of 2-designs and distance-semiregular graphs with distance-regularized vertices of eccentricity 3. Moreover:
	- incidence graphs of symmetric 2-designs are equivalent to bipartite distance-regular graphs with vertices of eccentricity 3 (Brouwer Cohen, Neumaier, 1989.)
	- incidence graphs of quasi-symmetric 2-designs with one intersection number zero are equivalent to distance-biregular graphs with $D = 3$ and $D' = 4$.
- What about $D = 4$?
	- B. Fernández, M.Maksimović, S. Rukavina, Characterizing bipartite distance-regularized graphs with vertices of eccentricity 4, Bull. Malays. Math. Sci. Soc. (2), 47, 2024. $4 \quad \Box \rightarrow 4 \quad \Box \rightarrow 4 \quad \bar{\equiv} \rightarrow 4 \quad \bar{\equiv} \rightarrow$ \equiv \curvearrowleft a \curvearrowright

SPBIBD

Definition

Let D be a 1- (v, b, r, k, λ) design and let (s, t) be a pair of non-negative integers. A flag (a non-flag) of D is a point-block pair (p, B) such that $p \in B$ ($p \notin B$). We say that D is a **special partially balanced incomplete block design** (SPBIBD for short) of type (s, t) if there are constants λ_1 and λ_2 with the following properties:

- (1) Any two points are contained in either λ_1 or λ_2 blocks.
- (2) If a point-block pair (p, B) is a flag, then the number of points in B which occur with p in λ_1 blocks is s.
- (3) If a point-block pair (p, B) is a non-flag, then the number of points in B which occur with p in λ_1 blocks is t.

In this case, we say that D is a $(v, b, r, k, \lambda_1, \lambda_2)$ SPBIBD of type (s, t) .

 QQ

지수는 지금 아이를 지키는 것이다.

The incidence graph of a SPBIBD

Lemma

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a $(v, b, r, k, \lambda_1, 0)$ SPBIBD of type $(k-1, t)$. Let Γ denote the incidence graph of D. Then, every vertex $p \in \mathcal{P}$ has eccentricity 4 in Γ .

Lemma

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a $(v, b, r, k, \lambda_1, 0)$ SPBIBD of type $(k-1, t)$. Let Γ denote the incidence graph of D. Then, every vertex $p \in \mathcal{P}$ is distance-regularized. Moreover, Γ is distance-semiregular with respect to P with the following intersection numbers:

$$
c_0 = 0
$$
, $c_1 = 1$, $c_2 = \lambda_1$, $c_3 = t$, $c_4 = r$.
\n $b_0 = r$, $b_1 = k - 1$, $b_2 = r - \lambda_1$, $b_3 = k - t$ $b_4 = 0$.

 OQ

イロト イ母ト イヨト

The incidence graph of a SPBIBD

Lemma

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a quasi-symmetric $(v, b, r, k, \lambda_1, 0)$ SPBIBD of type $(k-1,t)$ with intersection numbers $x=0$ and $y>0$. Let Γ denote the incidence graph of D. Then, every vertex $B \in \mathcal{B}$ has eccentricity 4 in Γ .

 Ω

The incidence graph of a SPBIBD

Theorem

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a quasi-symmetric $(v, b, r, k, \lambda_1, 0)$ SPBIBD of type $(k-1,t)$ with intersection numbers $x=0$ and $y>0$. Let Γ denote the incidence graph of D . Then, Γ is a $(\mathcal{P}, \mathcal{B})$ -bipartite distance-regularized graph. Moreover, every vertex $p \in \mathcal{P}$ has eccentricity equals 4 and the following intersection numbers:

$$
c_0 = 0
$$
, $c_1 = 1$, $c_2 = \lambda_1$, $c_3 = t$, $c_4 = r$.
\n $b_0 = r$, $b_1 = k - 1$, $b_2 = r - \lambda_1$, $b_3 = k - t$ $b_4 = 0$.

In addition, every vertex $B \in \mathcal{B}$ has eccentricity equals 4 and the following intersection numbers:

$$
c'_0 = 0, \t c'_1 = 1, \t c'_2 = y, \t c'_3 = \frac{t\lambda_1}{y}, \t c'_4 = k.
$$

$$
b'_0 = k, \t b'_1 = r - 1, \t b'_2 = k - y, \t b'_3 = r - \frac{t\lambda_1}{y}, \t b'_4 = 0.
$$

Distance-semiregular graphs and SPBIBDs

Lemma

Let Γ be a (Y, Y') -distance semiregular graph with respect to Y . Assume every vertex in Y has eccentricity $D=4.$ Let $b_i, c_i \ (0 \leq i \leq 4)$ denote the intersection numbers of every vertex in Y. Then, Γ is the incidence graph of a $(1+\frac{b_0b_1}{c_2}+\frac{b_0b_1b_2b_3}{c_2c_3c_4}$ $\frac{_{0}b_{1}b_{2}b_{3}}{c_{2}c_{3}c_{4}},b_{0}+\frac{b_{0}b_{1}b_{2}}{c_{2}c_{3}}$ $\frac{_{0}b_{1}b_{2}}{c_{2}c_{3}},b_{0}',b_{0},c_{2},0)$ SPBIBD of type (b_{1},c_{3}) .

Theorem

There is a one-to-one correspondence between the incidence graph of SPBIBDs with parameters $(v, b, r, k, \lambda_1, 0)$ of type $(k - 1, t)$ and distance-semiregular graphs with distance-regularized vertices of eccentricity 4.

 OQ

K ロ > 'K @ > 'K 경 > 'K 경 >

Lemma

Let Γ be a (Y, Y') -bipartite distance-regularized graph with vertices of eccentricity $4.$ Let $b_i, c_i; b'_i, c'_i \ (0 \leq i \leq 4)$ denote the intersection numbers of every vertex in Y and in Y' respectively. Then, Γ is the incidence graph of a $(1+\frac{b_0b_1}{c_2}+\frac{b_0b_1b_2b_3}{c_2c_3c_4})$ $\frac{_{0}b_{1}b_{2}b_{3}}{c_{2}c_{3}c_{4}},b_{0}+\frac{b_{0}b_{1}b_{2}}{c_{2}c_{3}}$ $\frac{_{0}b_{1}b_{2}}{c_{2}c_{3}},b_{0}^{\prime},b_{0},c_{2},0)$ SPBIBD of type (b_{1},c_{3}) which is quasi-symmetric with intersection numbers $x = 0$ and $y = c'_2$.

Theorem

There is a one-to-one correspondence between the incidence graph of quasi-symmetric SPBIBDs with parameters $(v, b, r, k, \lambda_1, 0)$ of type $(k-1, t)$ with intersection numbers $x = 0$ and $y > 0$, and bipartite distance-regularized graphs with vertices of eccentricity 4.

 Ω

K ロ) - K 레) - K 코) - K 코) - 그러

THANK YOU!

 $\mathcal{O} \curvearrowright \curvearrowright$

イロト イ部 トイモト イモト