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Terminology and notations

In this talk, Γ = (X,R) will denote a finite, undirected, connected graph,
without loops and multiple edges.

Definition

Let Γ = (X,R) and x, y ∈ X.

• The distance between x and y, denoted by ∂(x, y), is the length of a
shortest walk from x to y.

• Eccentricity of x is the greatest distance between x and any other
vertex. That is ε(x) = max

z∈X
∂(x, z).

• Diameter of Γ: D = max{ε(x) | x ∈ X}.
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Definition

Let Γ = (X,R).

• For an integer i we represent with Γi(x) the collection of all vertices
that are at distance i from vertex x. That is

Γi(x) = {y ∈ X | ∂(x, y) = i} .

• Γ(x) = Γ1(x).

• Γ is k-regular iff |Γ(x)| = k for every vertex x ∈ X.

• The collection of all the subsets Γi(x), for 0 ≤ i ≤ ε(x), makes up a
partition of the vertex set X that is called the distance partition of
Γ relative to x.

M. Maksimović (Faculty of Mathematics) 5th CroCoDays 3 / 28



(Y, Y ′)-bipartite graph
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Definition

A bipartite (or (Y, Y ′)-bipartite)
graph is a graph whose vertex set
can be partitioned into two subsets
Y and Y ′ such that each edge has
one end in Y and one end in Y ′.
The vertex sets Y and Y ′ in such a
partition are called color partitions
of the graph.
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Biregular graph
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Definition

A bipartite graph Γ with color
partitions Y and Y ′ is said to be
biregular if the valency of a vertex
only depends on the color partition
where it belongs to.
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Local regularity property

Let x ∈ X. Assume that y ∈ Γi(x) for some 0 ≤ i ≤ ε(x) and let z be a
neighbour of y. Then

∂(x, z) ∈ {i− 1, i, i+ 1}

and so z ∈ Γi−1(x) ∪ Γi(x) ∪ Γi+1(x). For y ∈ Γi(x) we therefore define
the following numbers:

ai(x, y) = |Γi(x) ∩ Γ(y)| , bi(x, y) = |Γi+1(x) ∩ Γ(y)| ,

ci(x, y) = |Γi−1(x) ∩ Γ(y)| .
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Local regularity property

Definition (GODSIL AND SHAWE-TAYLOR, 1987.)

We say that x ∈ X is distance-regularized if the numbers
ai(x, y), bi(x, y) and ci(x, y) do not depend on the choice of
y ∈ Γi(x), (0 ≤ i ≤ ε(x)).

In this case, the numbers ai(x, y), bi(x, y) and ci(x, y) are simply denoted
by ai(x), bi(x) and ci(x) respectively, and are called the intersection
numbers of x.
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Example

Let u be the vertex of
Petersen graph.
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Example

u

Γ0(u) Γ1(u) Γ2(u)

Let u be the vertex of Petersen
graph.

a0 = 0, a1 = 0, a2 = 2

b0 = 3, b1 = 2, b2 = 0

c0 = 0, c1 = 1, c2 = 1

u is distance regularized.
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Distance-regularized graphs

Definition
• A connected graph in which every vertex is distance-regularized is

called a distance-regularized graph.

• A distance-regular graph is distance-regularized graph where all its
vertices have the same intersection array

• A distance-regularized graph is said to be distance-biregular if
• is bipartite
• vertices in the same color partition have the same intersection numbers
• vertices in the different color partition have different intersection

numbers.

Theorem (GODSIL AND SHAWE-TAYLOR, 1987.)

Every distance-regularized graph is either distance-regular or
distance-biregular.
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Distance-semiregular graphs with respect to Y

Definition

A connected bipartite graph Γ with color partitions Y and Y ′ is called
distance-semiregular with respect to Y if it is distance-regular around
all vertices in Y , with the same parameters.
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Design

Definition

An incidence structure D = (P,B, I) such. that

• |P| = v, |B| = b,

• each block B ∈ B is incident with exactly k points,

• every t-tuple of distinct points from P is incident with exactly λ
blocks

• each point is incident with exactly r blocks

is called a t-(v, b, r, k, λ) design or a t-(v, k, λ) design.

Definition

Let x and y be non-negative integers with x < y. A design D is called a
(proper) quasi-symmetric design with intersection numbers x and y if
any two distinct blocks of D intersect in either x or y points, and both
intersection numbers are realized.
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Incidence graph of a design

Definition

The incidence graph of a design D = (P,B, I) is a (P,B)-bipartite graph
where the point x ∈ P is adjacent to the block B ∈ B if and only if x is
incident with B.
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Example
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B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7},
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Example
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a0 = 0, a1 = 0, a2 = 0, a3 = 0

b0 = 3, b1 = 2, b2 = 2, b3 = 0

c0 = 0, c1 = 1, c2 = 1, c3 = 3
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Bipartite distance-regularized graphs (BDRG)

If Γ = (X,R) is (Y, Y ′)-bipartite distance-regularized graph then Γ is
either a bipartite distance-regular graph or Γ is a distance-biregular graph.

Let Γ = (X,R) be bipartite distance-regularized graph. Then

• ai(x) = 0 for 0 ≤ i ≤ ε(x)

• All vertices from Y (Y ′, respectively) have the same eccentricity D
(D′, respectively)

• All vertices from Y (Y ′, respectively) have the same the same valency
k (k′, respectively)

• For x ∈ Y , y ∈ Y ′ and an integer i we abbreviate ci := ci(x),
bi := bi(x), c′i := ci(y) and b′i := bi(y).

Also it holds:

Theorem (DELORME, 1994.)

The difference D −D′ is at most 1. If D < D′ then D is odd.
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BDRG with D ≤ 3
Let Γ be (Y, Y ′)-bipartite distance-regularized graph with:

• D = 1 then there is one-to-one correspondence between the incidence
graph of 1-(1, 1, b) designs and Γ.

• D = 2 then there exists a one-to-one correspondence between the
incidence graphs of 2-(v, v, b) designs and Γ.

• D = 3 then there is one-to-one correspondence between the incidence
graphs of 2-designs and distance-semiregular graphs with
distance-regularized vertices of eccentricity 3. Moreover:

• incidence graphs of symmetric 2-designs are equivalent to bipartite
distance-regular graphs with vertices of eccentricity 3 ( Brouwer Cohen,
Neumaier, 1989.)

• incidence graphs of quasi-symmetric 2-designs with one intersection
number zero are equivalent to distance-biregular graphs with D = 3
and D′ = 4.

• What about D = 4?
• B. Fernández, M.Maksimović, S. Rukavina, Characterizing bipartite

distance-regularized graphs with vertices of eccentricity 4, Bull.
Malays. Math. Sci. Soc. (2), 47, 2024.
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• B. Fernández, M.Maksimović, S. Rukavina, Characterizing bipartite

distance-regularized graphs with vertices of eccentricity 4, Bull.
Malays. Math. Sci. Soc. (2), 47, 2024.
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SPBIBD

Definition

Let D be a 1-(v, b, r, k, λ) design and let (s, t) be a pair of non-negative
integers. A flag (a non-flag) of D is a point-block pair (p,B) such that
p ∈ B (p /∈ B). We say that D is a special partially balanced
incomplete block design (SPBIBD for short) of type (s, t) if there are
constants λ1 and λ2 with the following properties:

(1) Any two points are contained in either λ1 or λ2 blocks.

(2) If a point-block pair (p,B) is a flag, then the number of points in B
which occur with p in λ1 blocks is s.

(3) If a point-block pair (p,B) is a non-flag, then the number of points in
B which occur with p in λ1 blocks is t.

In this case, we say that D is a (v, b, r, k, λ1, λ2) SPBIBD of type (s, t).
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The incidence graph of a SPBIBD

Lemma

Let D = (P,B, I) be a (v, b, r, k, λ1, 0) SPBIBD of type (k − 1, t). Let Γ
denote the incidence graph of D. Then, every vertex p ∈ P has
eccentricity 4 in Γ.

Lemma

Let D = (P,B, I) be a (v, b, r, k, λ1, 0) SPBIBD of type (k − 1, t). Let Γ
denote the incidence graph of D. Then, every vertex p ∈ P is
distance-regularized. Moreover, Γ is distance-semiregular with respect to
P with the following intersection numbers:

c0 = 0, c1 = 1, c2 = λ1, c3 = t, c4 = r.

b0 = r, b1 = k − 1, b2 = r − λ1, b3 = k − t b4 = 0.
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The incidence graph of a SPBIBD

Lemma

Let D = (P,B, I) be a quasi-symmetric (v, b, r, k, λ1, 0) SPBIBD of type
(k − 1, t) with intersection numbers x = 0 and y > 0. Let Γ denote the
incidence graph of D. Then, every vertex B ∈ B has eccentricity 4 in Γ.
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The incidence graph of a SPBIBD

Theorem

Let D = (P,B, I) be a quasi-symmetric (v, b, r, k, λ1, 0) SPBIBD of type
(k − 1, t) with intersection numbers x = 0 and y > 0. Let Γ denote the
incidence graph of D. Then, Γ is a (P,B)-bipartite distance-regularized
graph. Moreover, every vertex p ∈ P has eccentricity equals 4 and the
following intersection numbers:

c0 = 0, c1 = 1, c2 = λ1, c3 = t, c4 = r.

b0 = r, b1 = k − 1, b2 = r − λ1, b3 = k − t b4 = 0.

In addition, every vertex B ∈ B has eccentricity equals 4 and the
following intersection numbers:

c′0 = 0, c′1 = 1, c′2 = y, c′3 =
tλ1
y
, c′4 = k.

b′0 = k, b′1 = r − 1, b′2 = k − y, b′3 = r − tλ1
y
, b′4 = 0.
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Distance-semiregular graphs and SPBIBDs

Lemma

Let Γ be a (Y, Y ′)-distance semiregular graph with respect to Y . Assume
every vertex in Y has eccentricity D = 4. Let bi, ci (0 ≤ i ≤ 4) denote the
intersection numbers of every vertex in Y . Then, Γ is the incidence graph
of a (1 + b0b1

c2
+ b0b1b2b3

c2c3c4
, b0 + b0b1b2

c2c3
, b′0, b0, c2, 0) SPBIBD of type (b1, c3).

Theorem

There is a one-to-one correspondence between the incidence graph of
SPBIBDs with parameters (v, b, r, k, λ1, 0) of type (k − 1, t) and
distance-semiregular graphs with distance-regularized vertices of
eccentricity 4.
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Lemma

Let Γ be a (Y, Y ′)-bipartite distance-regularized graph with vertices of
eccentricity 4. Let bi, ci; b

′
i, c
′
i (0 ≤ i ≤ 4) denote the intersection numbers

of every vertex in Y and in Y ′ respectively. Then, Γ is the incidence graph
of a (1 + b0b1

c2
+ b0b1b2b3

c2c3c4
, b0 + b0b1b2

c2c3
, b′0, b0, c2, 0) SPBIBD of type (b1, c3)

which is quasi-symmetric with intersection numbers x = 0 and y = c′2.

Theorem

There is a one-to-one correspondence between the incidence graph of
quasi-symmetric SPBIBDs with parameters (v, b, r, k, λ1, 0) of type
(k − 1, t) with intersection numbers x = 0 and y > 0, and bipartite
distance-regularized graphs with vertices of eccentricity 4.
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THANK YOU!
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