Mosaics of projective planes*

Vedran Krčadinac

University of Zagreb, Croatia

19.9.2024.

* This work was fully supported by the Croatian Science Foundation under the project 9752.

V. Krčadinac (University of Zagreb)

Mosaics of projective planes

19.9.2024. 1 / 33

An example of a mosaic

V. Krčadinac (University of Zagreb)

▲ ■ ● ○ Q ○
19.9.2024. 2/33

・ロト ・ 日 ト ・ 目 ト ・

An example of a mosaic

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

An example of a mosaic

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

Finite projective planes

PG(2,2) or symmetric 2-(7,3,1) design

∃ >

Finite projective planes

PG(2,3) or symmetric 2-(13,4,1) design

Picture source: M. T. Mohan, *p-almost Hadamard matrices and λ-planes*, J. Algebraic Combin. 55 (2022), no. 1, 89–108.

イロト イヨト イヨト イヨ

A mosaic of projective planes

< 47 ▶

A mosaic of projective planes

< 4³ ►

A mosaic of projective planes

- (日)

O. W. Gnilke, M. Greferath, M. O. Pavčević, *Mosaics of combinatorial designs*, Des. Codes Cryptogr. **86** (2018), no. 1, 85–95.

Definition.

Let t_i - (v, k_i, λ_i) , i = 1, ..., c be parameters of combinatorial designs, all with v points and b blocks and $\sum_{i=1}^{c} k_i = v$. A mosaic with parameters

$$t_1$$
- $(v, k_1, \lambda_1) \oplus \cdots \oplus t_c$ - (v, k_c, λ_c)

is a $v \times b$ matrix with entries from $\{1, \ldots, c\}$ such that the entries *i* represent incidences of a t_i - (v, k_i, λ_i) design, for $i = 1, \ldots, c$. Here, *c* is the number of colors and the matrix is also called a *c*-mosaic.

▲御▶ ▲ 国▶ ▲ 国

 $2-(13,4,1) \oplus 2-(13,4,1) \oplus 2-(13,4,1)$

<ロ> <四> <四> <四> <四</td>

 $2-(13,4,1) \oplus 2-(13,4,1) \oplus 2-(13,4,1) \oplus 2-(13,1,0)$

メロト メロト メヨト メ

 $2-(13,4,1) \oplus 2-(13,4,1) \oplus 2-(13,4,1) \oplus 2-(13,1,0)$

 $\lambda(v-1)=k(k-1)$

< □ > < □ > < □ > < □ >

メロト メポト メヨト メヨト

A D > A A > A > A

(日)

$$D = \{0, 1, 3\} \subseteq \mathbb{Z}_7 = G$$

(日)

$$D = \{0, 1, 3\} \subseteq \mathbb{Z}_7 = G$$
$$\det D = \{D + x \mid x \in G\}$$

A D > A A > A > A

$$D = \{0, 1, 3\} \subseteq \mathbb{Z}_7 = G$$

dev $D = \{D + x \mid x \in G\}$

$$D = \{0, 1, 3\} \subseteq \mathbb{Z}_7 = G$$

$$\operatorname{dev} D = \{D + x \mid x \in G\}$$

A. Ćustić, V. Krčadinac, Y. Zhou, Tiling groups with difference sets, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

$$\mathsf{D}=\{0,1,3\}\subseteq \mathbb{Z}_7=\mathit{G}$$

$$\operatorname{dev} D = \{D + x \mid x \in G\}$$

A. Ćustić, V. Krčadinac, Y. Zhou, Tiling groups with difference sets, Electron. J. Combin. 22 (2015), no. 2, Paper 2.56, 13 pp.

Definition.

A tiling of an additively written group G is a family of pairwise disjoint (v, k, λ) difference sets $\{D_1, \ldots, D_c\}$ such that $D_1 \cup \cdots \cup D_c = G \setminus \{0\}$.

$$D = \{0, 1, 3\} \subseteq \mathbb{Z}_7 = G$$

$$\operatorname{dev} D = \{D + x \mid x \in G\}$$

 $\{x - y \mid x, y \in D, x \neq y\}$ covers each element of $G \setminus \{0\}$ exactly λ times

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

Theorem.

The development of a tiling of G with (v, k, λ) difference sets is a mosaic of symmetric designs. It has G as an automorphism group acting regularly on the rows and columns.

Example. A tiling of $\mathbb{Z}_{31} = \{0, \dots, 30\}$ with (31, 6, 1) difference sets:

$$D_1 = \{1, 5, 11, 24, 25, 27\}$$
$$D_2 = \{2, 10, 17, 19, 22, 23\}$$
$$D_3 = \{3, 4, 7, 13, 15, 20\}$$
$$D_4 = \{6, 8, 9, 14, 26, 30\}$$
$$D_5 = \{12, 16, 18, 21, 28, 29\}$$

· < /⊒ > < ∃ > < ∃

Example. A tiling of $\mathbb{Z}_{31} = \{0, \dots, 30\}$ with (31, 6, 1) difference sets:

 $D_1 = \{1, 5, 11, 24, 25, 27\}$ $D_2 = \{2, 10, 17, 19, 22, 23\}$ $D_3 = \{3, 4, 7, 13, 15, 20\}$ $D_4 = \{6, 8, 9, 14, 26, 30\}$ $D_5 = \{12, 16, 18, 21, 28, 29\}$

Example. A tiling of $\mathbb{Z}_{31} = \{0, \dots, 30\}$ with (31, 6, 1) difference sets:

 $D_1 = \{1, 5, 11, 24, 25, 27\}$ $D_2 = \{2, 10, 17, 19, 22, 23\}$ $D_3 = \{3, 4, 7, 13, 15, 20\}$ $D_4 = \{6, 8, 9, 14, 26, 30\}$ $D_5 = \{12, 16, 18, 21, 28, 29\}$

V. Krčadinac (University of Zagreb)

Mosaics of projective planes

19.9.2024. 20 / 33

< 行

.

V. Krčadinac (University of Zagreb)

< E ▶ E • つへで19.9.2024. 21/33

• • = • •

< □ > < 凸

 $2-(31,6,1) \oplus 2-(31,6,1) \oplus 2-(31,6,1) \oplus 2-(31,6,1) \oplus 2-(31,6,1) \oplus 2-(31,6,1) \oplus 2-(31,1,0)$

https://www.imaginary.org/gallery/difference-bracelets

More Galleries

Mosaics of projective planes

For which orders q are there mosaics of projective planes?

 $(q^2 + q + 1, q + 1, 1) \oplus \cdots \oplus (q^2 + q + 1, q + 1, 1) \oplus (q^2 + q + 1, 1, 0)$

▶ < E ▶ <</p>

 $(q^2 + q + 1, q + 1, 1) \oplus \cdots \oplus (q^2 + q + 1, q + 1, 1) \oplus (q^2 + q + 1, 1, 0)$

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

q	2	3	4	5	7	8	9	
Tiling	\checkmark	×	×	\checkmark	\checkmark	\checkmark	?	•••
Mosaic								

 $(q^2 + q + 1, q + 1, 1) \oplus \cdots \oplus (q^2 + q + 1, q + 1, 1) \oplus (q^2 + q + 1, 1, 0)$

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

q	2	3	4	5	7	8	9	
Tiling	\checkmark	X	×	\checkmark	\checkmark	\checkmark	?	•••
Mosaic	\checkmark			\checkmark	\checkmark	\checkmark		

 $(q^2 + q + 1, q + 1, 1) \oplus \cdots \oplus (q^2 + q + 1, q + 1, 1) \oplus (q^2 + q + 1, 1, 0)$

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

q	2	3	4	5	7	8	9	
Tiling	\checkmark	X	×	\checkmark	\checkmark	\checkmark	?	•••
Mosaic	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		

V. Krčadinac, *Small examples of mosaics of combinatorial designs*, preprint, 2024. https://arxiv.org/abs/2405.12672

・ 回 ト ・ ヨ ト ・ ヨ ト …

 $(q^2 + q + 1, q + 1, 1) \oplus \cdots \oplus (q^2 + q + 1, q + 1, 1) \oplus (q^2 + q + 1, 1, 0)$

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

q	2	3	4	5	7	8	9	•••
Tiling	\checkmark	X	X	\checkmark	\checkmark	\checkmark	?	•••
Mosaic	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	?	•••

V. Krčadinac, *Small examples of mosaics of combinatorial designs*, preprint, 2024. https://arxiv.org/abs/2405.12672

米田 とくほとくほど

Number of incidence matrices for q = 3:

$$\frac{13! \cdot 13!}{|Aut(PG(2,3))|} \approx 6.90452 \cdot 10^{15}$$

Image: Image:

- **4 ∃ ≻ 4**

Number of incidence matrices for q = 4:

$$\frac{21! \cdot 21!}{|Aut(PG(2,4))|} \approx 2.15797 \cdot 10^{34}$$

A D > A A > A > A

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

q	V	Group	#DS	Tiling	Group	#DS	Tiling
2	7	\mathbb{Z}_7	14	\checkmark			
3	13	\mathbb{Z}_{13}	52	×			
4	21	\mathbb{Z}_{21}	42	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_7$	294	×
5	31	\mathbb{Z}_{31}	310	\checkmark			
7	57	\mathbb{Z}_{57}	684	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_{19}$	12 996	\checkmark
8	73	\mathbb{Z}_{73}	584	\checkmark			
9	91	\mathbb{Z}_{91}					
11	133	\mathbb{Z}_{133}					
13	183	\mathbb{Z}_{183}			$\mathbb{Z}_3 \rtimes \mathbb{Z}_{61}$		

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

q	V	Group	#DS	Tiling	Group	#DS	Tiling
2	7	\mathbb{Z}_7	14	\checkmark			
3	13	\mathbb{Z}_{13}	52	×			
4	21	\mathbb{Z}_{21}	42	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_7$	294	×
5	31	\mathbb{Z}_{31}	310	\checkmark			
7	57	\mathbb{Z}_{57}	684	×	$\mathbb{Z}_3\rtimes\mathbb{Z}_{19}$	12996	\checkmark
8	73	\mathbb{Z}_{73}	584	\checkmark			
9	91	\mathbb{Z}_{91}	1092	×			
11	133	\mathbb{Z}_{133}	4788	×			
13	183	\mathbb{Z}_{183}	7320	×	$\mathbb{Z}_3\rtimes\mathbb{Z}_{61}$	446 520	?

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

q	v	Group	#DS	Tiling	Group	#DS	Tiling
2	7	\mathbb{Z}_7	14	\checkmark			
3	13	\mathbb{Z}_{13}	52	×			
4	21	\mathbb{Z}_{21}	42	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_7$	294	×
5	31	\mathbb{Z}_{31}	310	\checkmark			
7	57	\mathbb{Z}_{57}	684	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_{19}$	12996	\checkmark
8	73	\mathbb{Z}_{73}	584	\checkmark			
9	91	\mathbb{Z}_{91}	1092	×			
11	133	\mathbb{Z}_{133}	4788	×			
13	183	\mathbb{Z}_{183}	7320	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_{61}$	446 520	?

K. Tabak, *Normalized difference set tiling conjecture*, J. Combin. Des. **26** (2018), no. 10, 505–513.

A. Ćustić, V. Krčadinac, Y. Zhou, *Tiling groups with difference sets*, Electron. J. Combin. **22** (2015), no. 2, Paper 2.56, 13 pp.

q	v	Group	#NDS	Tiling	Group	#DS	Tiling
2	7	\mathbb{Z}_7	2	\checkmark			
3	13	\mathbb{Z}_{13}	4	×			
4	21	\mathbb{Z}_{21}	2	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_7$	294	×
5	31	\mathbb{Z}_{31}	10	\checkmark			
7	57	\mathbb{Z}_{57}	12	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_{19}$	12 996	\checkmark
8	73	\mathbb{Z}_{73}	8	\checkmark			
9	91	\mathbb{Z}_{91}	12	×			
11	133	\mathbb{Z}_{133}	36	×			
13	183	\mathbb{Z}_{183}	40	×	$\mathbb{Z}_3 \rtimes \mathbb{Z}_{61}$	446 520	?

K. Tabak, *Normalized difference set tiling conjecture*, J. Combin. Des. **26** (2018), no. 10, 505–513.

Tiling cyclic groups with Singer difference sets

q	v	Group	#NDS	Tiling
16	273	\mathbb{Z}_{273}	12	×
17	307	\mathbb{Z}_{307}	102	×
19	381	\mathbb{Z}_{381}	84	×
23	553	\mathbb{Z}_{553}	156	×
25	651	\mathbb{Z}_{651}	60	×
27	757	\mathbb{Z}_{757}	84	×
29	871	\mathbb{Z}_{871}	264	×
31	993	\mathbb{Z}_{993}	220	×
32	1057	\mathbb{Z}_{1057}	60	×
37	1407	\mathbb{Z}_{1407}	264	×
41	1723	\mathbb{Z}_{1723}	574	×
43	1893	\mathbb{Z}_{1893}	420	×
47	2257	\mathbb{Z}_{2257}	720	×
49	2451	\mathbb{Z}_{2451}	252	×
53	2863	\mathbb{Z}_{2863}	816	×
59	3541	\mathbb{Z}_{3541}	1180	?

V. Krčadinac (University of Zagreb)

Thanks for your attention!

3 1 4

Image: A matrix