

The connectivity dimension of a graph Kurt Klement Gottwald, Tobias Hofmann

Introduction

The metric dimension.

ECHNISCHE INIVERSITÄT PID

> Given a metric space, how many landmarks have to be placed such that a subject can localize itself just by knowing its distances to the landmarks?

ECHNISCHE NIVERSITÄT

> Given a **graph**, how many landmarks have to be placed such that a subject can localize itself just by knowing its distances to the landmarks?

Literature.

- Harary and Melter [\[3\]](#page-60-0)
- Khuller, Raghavachari, and Rosenfeld [\[5\]](#page-60-1)
- Chartrand, Eroh, Johnson, and Oellermann [\[1\]](#page-60-2)

Given a **graph**, how many landmarks have to be placed such that a subject can localize itself just by knowing its distances to the landmarks?

Literature.

- Harary and Melter [\[3\]](#page-60-0)
- Khuller, Raghavachari, and Rosenfeld [\[5\]](#page-60-1)
- Chartrand, Eroh, Johnson, and Oellermann [\[1\]](#page-60-2)

Terminology.

- we consider nonempty, finite, simple, undirected graphs
- $\kappa(x, y)$ denotes the number of independent paths between two vertices x and y
- **■** $k(x, x) := \infty$ for all vertices x.

[Introduction](#page-1-0)

Definition.

TECHNISCHE
UNIVERSITÄT ERLIN

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

 $W = \{v_1, v_4, v_8\}$ $r(v_2, W) = [1, 2, 1]$

[Introduction](#page-1-0)

Definition.

.
TECHNISCHE
UNIVERSITÄT

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

■ connectivity representation of a vertex $x \in V(G)$ is the vector

$$
r(x, W) \coloneqq [\kappa(x, w_1), \ldots, \kappa(x, w_k)].
$$

$$
W = \{v_1, v_4, v_8\} \text{ is not resolving}
$$

$$
r(v_2, W) = [1, 2, 1]
$$

$$
r(v_3, W) = [1, 2, 1]
$$

$$
X = \{v_2, v_5, v_7\} \text{ is resolving}
$$

Definition.

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

■ connectivity representation of a vertex $x \in V(G)$ is the vector

$$
r(x, W) \coloneqq [\kappa(x, w_1), \ldots, \kappa(x, w_k)].
$$

■ *W* is *resolving* for *G* if

$$
r(x, W) = r(y, W) \Rightarrow x = y
$$
 for all $x, y \in V(G)$.

$$
W = \{v_1, v_4, v_8\}
$$
 is not resolving

$$
r(v_2, W) = [1, 2, 1]
$$

$$
r(v_3, W) = [1, 2, 1]
$$

$$
X = \{v_2, v_5, v_7\}
$$
 is resolving, but not a basis

Definition.

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

■ connectivity representation of a vertex $x \in V(G)$ is the vector

$$
r(x, W) \coloneqq [\kappa(x, w_1), \ldots, \kappa(x, w_k)].
$$

 W is resolving for G if

$$
r(x, W) = r(y, W) \Rightarrow x = y
$$
 for all $x, y \in V(G)$.

■ A connectivity basis is a resolving set of minimum cardinality and the connectivity dimension $cdim(G)$ of G is the cardinality of a basis of G.

Definition.

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

■ connectivity representation of a vertex $x \in V(G)$ is the vector

$$
r(x, W) \coloneqq [\kappa(x, w_1), \ldots, \kappa(x, w_k)].
$$

W is resolving for G if

$$
r(x, W) = r(y, W) \Rightarrow x = y
$$
 for all $x, y \in V(G)$.

A connectivity basis is a resolving set of minimum cardinality and the connectivity dimension $cdim(G)$ of G is the cardinality of a basis of G.

A Measure of Graph Heterogeneity

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq$ cdim(G) $\leq n-1$.

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq$ cdim(G) $\leq n-1$.

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq$ cdim(G) $\leq n-1$.

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

Proof. Clearly, cdim(K_2) = 1. To show: This is the only such graph.

ECHNISCHE

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq$ cdim(G) $\leq n-1$.

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

Proof. Assume there is another connected graph G, on $n > 3$ vertices, having a resolving set $W = \{w\}, w \in V(G) = \{w = v_1, ..., v_n\}.$

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq$ cdim(G) $\leq n-1$.

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

Proof. Assume there is another connected graph G, on $n > 3$ vertices, having a resolving set $W = \{w\}$, $w \in V(G) = \{w = v_1, \ldots, v_n\}$. Since $\kappa(x, y)$ takes values only in $\{0, \ldots, n-1\}$, if there is any chance that W could be resolving, then

$$
r(v_1, W) = [\kappa(v_1, w)] = [\infty],
$$

\n
$$
r(v_2, W) = [\kappa(v_2, w)] = [1],
$$

\n
$$
\vdots
$$

\n
$$
r(v_n, W) = [\kappa(v_n, w)] = [n - 1],
$$
 for an appropriate labeling of vertices.

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq$ cdim(G) $\leq n-1$.

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

Proof. Assume there is another connected graph G, on $n > 3$ vertices, having a resolving set $W = \{w\}$, $w \in V(G) = \{w = v_1, \ldots, v_n\}$. Since $\kappa(x, y)$ takes values only in $\{0, \ldots, n-1\}$, if there is any chance that W could be resolving, then

$$
r(v_1, W) = [\kappa(v_1, w)] = [\infty],
$$

\n
$$
r(v_2, W) = [\kappa(v_2, w)] = [1],
$$

\n
$$
\vdots
$$

\n
$$
r(v_n, W) = [\kappa(v_n, w)] = [n - 1],
$$
 for an appropriate labeling of vertices.

- But $\kappa(v_n, w) = n 1$ says that v_n and w are adjacent to all other vertices.
- **■** We obtain two independent paths v_2w and v_2v_nw , contradicting $\kappa(v_2, w) = 1$. \Box

A connected graph G on n vertices has cdim(G) = $n - 1$ if and only if G is uniformly k-connected.

A connected graph G on n vertices has $cdim(G) = n - 1$ if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w, x) \neq \kappa(w, y)$.

A connected graph G on n vertices has $cdim(G) = n - 1$ if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w, x) \neq \kappa(w, y)$. So $W := V(G) \setminus \{x, y\}$ is a resolving set for G and thus cdim(G) $\leq n-2$.

A connected graph G on n vertices has cdim(G) = $n-1$ if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w, x) \neq \kappa(w, y)$. So $W := V(G) \setminus \{x, y\}$ is a resolving set for G and thus cdim(G) $\leq n-2$.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set $W \subset V(G)$ with $|W| \leq n-2$.

A connected graph G on n vertices has cdim(G) = $n-1$ if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w,x) \neq \kappa(w,y)$. So $W \coloneqq V(G) \setminus \{x,y\}$ is a resolving set for G and thus cdim(G) $\leq n-2$.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set $W \subset V(G)$ with $|W| \leq n-2$. Denoting two vertices in $V(G) \setminus W$ by x and y, we obtain

$$
r(x, W) = [k, \ldots, k] = r(x, W).
$$

So W cannot be resolving for G and cdim(G) = $n - 1$.

A connected graph G on n vertices has cdim(G) = $n-1$ if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w,x) \neq \kappa(w,y)$. So $W \coloneqq V(G) \setminus \{x,y\}$ is a resolving set for G and thus cdim(G) $\leq n-2$.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set $W \subset V(G)$ with $|W| \leq n-2$. Denoting two vertices in $V(G) \setminus W$ by x and y, we obtain

$$
r(x, W) = [k, \ldots, k] = r(x, W).
$$

So W cannot be resolving for G and cdim(G) = $n - 1$.

Open Problems.

- **■** How to characterize graphs with connectivity dimension $n 2$?
- How to characterize graphs with connectivity dimension 2?
- \blacksquare How to characterize graphs with connectivity dimension k ?

 $ε, 1, 0, 1, 0, 1.$

TECHNISCHE . LEINNISEITE
UNIVERSITÄT FRIIN

 ϵ , 1, 0, 1, 0, 1.

TECHNISCHE . LEINNISEITE
UNIVERSITÄT ERLIN

ϵ, **1***,* 0*,* 1*,* 0*,* 1*.*

TECHNISCHE . LEINNISEITE
UNIVERSITÄT FRIIN

ϵ, 1*,* **0***,* 1*,* 0*,* 1*.*

TECHNISCHE . LEINNISEITE
UNIVERSITÄT FRIIN

Example. Consider the threshold graph G generated by the sequence

 ϵ , 1, 0, 1, 0, 1.

TECHNISCHE LEITINISEITE
JNIVERSITÄT FRIIN

Example. Consider the threshold graph G generated by the sequence

ϵ, 1*,* 0*,* 1*,* **0***,* 1*.*

TECHNISCHE LEITINISEITE
JNIVERSITÄT FRIIN

Example. Consider the threshold graph G generated by the sequence

ϵ, 1*,* 0*,* 1*,* 0*,* **1***.*

TECHNISCHE . LETINISEITE
UNIVERSITÄT FRIIN

Example. Consider the threshold graph G generated by the sequence

ϵ, 1*,* 0*,* 1*,* 0*,* 1*.*

 \bullet threshold graphs are maximally local connected¹, i.e. they satisfy $\kappa(x, y) = \min\{\deg(x), \deg(y)\}$ for all vertices $x, y \in V(G)$ *.*

 $¹$ see Hammer, Ibaraki, and Simeone [\[2\]](#page-60-3) or Hofmann [\[4\]](#page-60-4)</sup>

Example. Consider the threshold graph G generated by the sequence

ϵ, 1*,* 0*,* 1*,* 0*,* 1*.*

 \bullet threshold graphs are maximally local connected¹, i.e. they satisfy

 $\kappa(x, y) = \min\{\deg(x), \deg(y)\}$ for all vertices $x, y \in V(G)$ *.*

 \bullet { v_1, v_6 } is resolving for G

 1 see Hammer, Ibaraki, and Simeone $[2]$ or Hofmann $[4]$

Example. Consider the threshold graph G generated by the sequence

ϵ, 1*,* 0*,* 1*,* 0*,* 1*.*

 \bullet threshold graphs are maximally local connected¹, i.e. they satisfy

 $\kappa(x, y) = \min\{\deg(x), \deg(y)\}$ for all vertices $x, y \in V(G)$ *.*

- \bullet { v_1, v_6 } is resolving for G
- there is a graph with connectivity dimension 2 for any $n > 3$

 1 see Hammer, Ibaraki, and Simeone $[2]$ or Hofmann $[4]$

Example. Consider the threshold graph G generated by the sequence

ϵ, 1*,* 0*,* 1*,* 0*,* 1*.*

 \bullet threshold graphs are maximally local connected¹, i.e. they satisfy

 $\kappa(x, y) = \min\{\deg(x), \deg(y)\}$ for all vertices $x, y \in V(G)$ *.*

- \bullet { v_1, v_6 } is resolving for G
- there is a graph with connectivity dimension 2 for any $n > 3$
- there is a graph with connectivity dimension k for any $n \geq k + 1$

1 see Hammer, Ibaraki, and Simeone [\[2\]](#page-60-3) or Hofmann [\[4\]](#page-60-4)

TECHNISCHE RERIIN

Let G be the threshold graph of order n generated by the sequence

$$
x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}, \quad x_i \in \{0,1\}, x_m = 1, k_1 \geq 2.
$$

Then

$$
cdim(G) = \begin{cases} n-m & \text{if } k_m > 1, \\ n-m+1 & \text{if } k_m = 1. \end{cases}
$$

TECHNISCHE INIVERSITÄT $011A$

Let G be the threshold graph of order n generated by the sequence

$$
x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}, \quad x_i \in \{0,1\}, x_m = 1, k_1 \geq 2.
$$

Then

$$
cdim(G) = \begin{cases} n-m & \text{if } k_m > 1, \\ n-m+1 & \text{if } k_m = 1. \end{cases}
$$

Corollary.

For every $\varepsilon > 0$ there is a graph G and an induced subgraph H such that

$$
\frac{\text{cdim}(G)}{\text{cdim}(H)} < \varepsilon.
$$

ECHNISCHE NIVERSITÄT

Let G be the threshold graph of order n generated by the sequence

$$
x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}, \quad x_i \in \{0,1\}, x_m = 1, k_1 \geq 2.
$$

Then

$$
cdim(G) = \begin{cases} n-m & \text{if } k_m > 1, \\ n-m+1 & \text{if } k_m = 1. \end{cases}
$$

Corollary.

For every $\varepsilon > 0$ there is a graph G and an induced subgraph H such that

$$
\frac{\text{cdim}(G)}{\text{cdim}(H)} < \varepsilon.
$$

Proof. Choose G to be the threshold graph with sequence 0101*...*01, of order 2n.

ECHNISCHE

Let G be the threshold graph of order n generated by the sequence

$$
x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}, \quad x_i \in \{0,1\}, x_m = 1, k_1 \geq 2.
$$

Then

$$
cdim(G) = \begin{cases} n-m & \text{if } k_m > 1, \\ n-m+1 & \text{if } k_m = 1. \end{cases}
$$

Corollary.

For every $\varepsilon > 0$ there is a graph G and an induced subgraph H such that

$$
\frac{\text{cdim}(G)}{\text{cdim}(H)} < \varepsilon.
$$

Proof. Choose G to be the threshold graph with sequence 0101*...*01, of order 2n. Deleting all vertices corresponding to zeros in the sequence results in $H = K_n$ as an induced subgraph of G. We have cdim(G) = 2 and cdim(H) = $n - 1$.

Determining a Graph's Connectivity Dimension

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

Proof Idea. The problem is in NP.

ECHNISCHE NIVERSITÄT

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

ECHNISCHE NIVERSITÄT

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

ECHNISCHE LEITINISEITE
JNIVERSITÄT

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

TECHNISCHE LEITINISEITE
JNIVERSITÄT

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

ECHNISCHE LEIMISENE
JNIVERSITÄT

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

TECHNISCHE

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction to 3-SAT. Consider, for example, the clause $x_1 \vee \overline{x_2} \vee x_3$. We construct a graph G as follows. at least one of at least one of at least one of

TECHNISCHE

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction to 3-SAT. Consider, for example, the clause $x_1 \vee \overline{x_2} \vee x_3$. We construct a graph G as follows. at least one of at least one of at least one of

TECHNISCHE

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction to 3-SAT. Consider, for example, the clause $x_1 \vee \overline{x_2} \vee x_3$. We construct a graph G as follows. at least one of at least one of at least one of

ECHNISCHE

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

ECHNISCHE

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction to 3-SAT. Consider, for example, the clause $x_1 \vee \overline{x_2} \vee x_3$. We construct a graph G as follows. T T F

If the given 3-SAT instance is satisfiable, then $cdim(G)=2(m+n)$.

ECHNISCHE

Given a graph G and an integer k, deciding whether cdim(G) $\leq k$ is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction to 3-SAT. Consider, for example, the clause $x_1 \vee \overline{x_2} \vee x_3$. We construct a graph G as follows. T T F

- **If the given 3-SAT instance is satisfiable, then cdim(G)**=2($m+n$).
- If cdim(G)=2($m+n$), then the corresponding 3-SAT instance is satisfiable.

Conclusion and Outlook

TECHNISCHE
UNIVERSITÄT FRIIN

- Determining the connectivity dimension is NP-complete.
- Set cover formulation yields approximation algorithms; Lund and Yannakakis [\[6\]](#page-60-5).

INIVERSITÄT

- Determining the connectivity dimension is NP-complete.
- Set cover formulation yields approximation algorithms; Lund and Yannakakis [\[6\]](#page-60-5).

Open Problems.

- Are there good approximation algorithms for the specific case?
- What information is in the landmarks?

- Determining the connectivity dimension is NP-complete.
- Set cover formulation yields approximation algorithms; Lund and Yannakakis [\[6\]](#page-60-5).

Open Problems.

- Are there good approximation algorithms for the specific case?
- What information is in the landmarks?

Structural Results.

- The connectivity dimension measures graph heterogeneity.
- We characterized graphs with cdim(G) = 1 and cdim(G) = $n 1$.

- Determining the connectivity dimension is NP-complete.
- Set cover formulation yields approximation algorithms; Lund and Yannakakis [\[6\]](#page-60-5).

Open Problems.

- Are there good approximation algorithms for the specific case?
- What information is in the landmarks?

Structural Results.

- The connectivity dimension measures graph heterogeneity.
- We characterized graphs with cdim(G) = 1 and cdim(G) = $n 1$.

Open Problems.

- How to characterize graphs with connectivity dimension $n-2, 2$, or general k?
- How is the connectivity dimension related to other graph parameters?

Preprint

Kurt Klement Gottwald, Tobias Hofmann, The connectivity dimension of a graph, 2024+.

- [1] Gary Chartrand, Linda Eroh, Mark A Johnson, and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3):99–113, 2000.
- [2] Peter L. Hammer, Toshihide Ibaraki, and Bruno Simeone. Threshold sequences. SIAM Journal on Algebraic Discrete Methods, 2(1):39–49, 1981.
- [3] Frank Harary and Robert A. Melter. On the metric dimension of a graph. Ars Combinatorica, 2(191-195):1, 1976.
- [4] Tobias Hofmann. On pairwise graph connectivity. Chemnitz University of Technology, 2023.
- [5] Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in graphs. Discrete Applied Mathematics, 70(3):217–229, 1996.
- [6] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM (JACM), 41(5):960–981, 1994.