

The connectivity dimension of a graph Kurt Klement Gottwald, <u>Tobias Hofmann</u>

Introduction

ECHNISCHE

UNIVERSITÄT

Given a metric space, how many landmarks have to be placed such that a subject can localize itself just by knowing its distances to the landmarks?

The metric dimension.

ECHNISCHE

NIVERSITÄT

Given a **graph**, how many landmarks have to be placed such that a subject can localize itself just by knowing its distances to the landmarks?

Literature.

- Harary and Melter [3]
- Khuller, Raghavachari, and Rosenfeld [5]
- Chartrand, Eroh, Johnson, and Oellermann [1]

The metric dimension.

Given a **graph**, how many landmarks have to be placed such that a subject can localize itself just by knowing its distances to the landmarks?

Literature.

- Harary and Melter [3]
- Khuller, Raghavachari, and Rosenfeld [5]
- Chartrand, Eroh, Johnson, and Oellermann [1]

Terminology.

- we consider nonempty, finite, simple, undirected graphs
- $\kappa(x, y)$ denotes the number of independent paths between two vertices x and y
- $\kappa(x,x) \coloneqq \infty$ for all vertices x.

Introduction

Definition.

TECHNISCHE UNIVERSITÄT

FRIIN

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

Introduction

 $W = \{v_1, v_4, v_8\}$ $r(v_2, W) = [1, 2, 1]$

ECHNISCHE

INIVERSITÄT

Definition.

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

■ connectivity representation of a vertex *x* ∈ *V*(*G*) is the vector

$$r(x, W) \coloneqq [\kappa(x, w_1), \ldots, \kappa(x, w_k)].$$

$$\begin{split} & \mathcal{W} = \{v_1, v_4, v_8\} \text{ is not resolving} \\ & r(v_2, \mathcal{W}) = [1, 2, 1] \\ & r(v_3, \mathcal{W}) = [1, 2, 1] \\ & X = \{v_2, v_5, v_7\} \text{ is resolving} \end{split}$$

Definition.

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

connectivity representation of a vertex x ∈ V(G) is the vector

$$r(x, W) \coloneqq [\kappa(x, w_1), \ldots, \kappa(x, w_k)].$$

• W is resolving for G if

$$r(x,W) = r(y,W) \quad \Rightarrow \quad x = y \quad \text{for all } x,y \in V(G).$$

$$\begin{split} & \mathcal{W} = \{v_1, v_4, v_8\} \text{ is not resolving} \\ & r(v_2, \mathcal{W}) = [1, 2, 1] \\ & r(v_3, \mathcal{W}) = [1, 2, 1] \\ & X = \{v_2, v_5, v_7\} \text{ is resolving, but not a basis} \end{split}$$

Definition.

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

connectivity representation of a vertex x ∈ V(G) is the vector

$$r(x, W) \coloneqq [\kappa(x, w_1), \ldots, \kappa(x, w_k)].$$

• W is resolving for G if

$$r(x,W) = r(y,W) \Rightarrow x = y \text{ for all } x, y \in V(G).$$

 A connectivity basis is a resolving set of minimum cardinality and the connectivity dimension cdim(G) of G is the cardinality of a basis of G.

Definition.

Given an ordered subset $W = \{w_1, \ldots, w_k\}$ of vertices of a graph G, the

connectivity representation of a vertex x ∈ V(G) is the vector

$$r(x,W) \coloneqq [\kappa(x,w_1),\ldots,\kappa(x,w_k)].$$

• W is resolving for G if

$$r(x,W) = r(y,W) \Rightarrow x = y \text{ for all } x, y \in V(G).$$

 A connectivity basis is a resolving set of minimum cardinality and the connectivity dimension cdim(G) of G is the cardinality of a basis of G.

A Measure of Graph Heterogeneity

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq \operatorname{cdim}(G) \leq n-1.$

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq \operatorname{cdim}(G) \leq n-1.$

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq \operatorname{cdim}(G) \leq n-1.$

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

Proof. Clearly, $\operatorname{cdim}(K_2) = 1$. To show: This is the only such graph.

ECHNISCHE

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq \operatorname{cdim}(G) \leq n-1.$

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

Proof. Assume there is another connected graph G, on $n \ge 3$ vertices, having a resolving set $W = \{w\}, w \in V(G) = \{w = v_1, \dots, v_n\}.$

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq \operatorname{cdim}(G) \leq n-1.$

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

Proof. Assume there is another connected graph G, on $n \ge 3$ vertices, having a resolving set $W = \{w\}, w \in V(G) = \{w = v_1, ..., v_n\}$. Since $\kappa(x, y)$ takes values only in $\{0, ..., n-1\}$, if there is any chance that W could be resolving, then

$$\begin{aligned} r(v_1, W) &= [\kappa(v_1, w)] = [\infty], \\ r(v_2, W) &= [\kappa(v_2, w)] = [1], \\ \vdots \\ r(v_n, W) &= [\kappa(v_n, w)] = [n-1], & \text{for an appropriate labeling of vertices.} \end{aligned}$$

The set $V(G) \setminus \{w\}$, $w \in V(G)$, is resolving for any connected graph G. Thus $0 \leq \operatorname{cdim}(G) \leq n-1.$

Proposition.

A connected graph G has cdim(G) = 1 if and only if $G = K_2$.

Proof. Assume there is another connected graph G, on $n \ge 3$ vertices, having a resolving set $W = \{w\}, w \in V(G) = \{w = v_1, ..., v_n\}$. Since $\kappa(x, y)$ takes values only in $\{0, ..., n-1\}$, if there is any chance that W could be resolving, then

$$\begin{aligned} r(v_1, W) &= [\kappa(v_1, w)] = [\infty], \\ r(v_2, W) &= [\kappa(v_2, w)] = [1], \\ \vdots \\ r(v_n, W) &= [\kappa(v_n, w)] = [n-1], & \text{for an appropriate labeling of vertices.} \end{aligned}$$

- But $\kappa(v_n, w) = n 1$ says that v_n and w are adjacent to all other vertices.
- We obtain two independent paths v_2w and v_2v_nw , contradicting $\kappa(v_2, w) = 1$.

A connected graph G on n vertices has cdim(G) = n - 1 if and only if G is uniformly k-connected.

A connected graph G on n vertices has cdim(G) = n - 1 if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w, x) \neq \kappa(w, y)$.

A connected graph G on n vertices has cdim(G) = n - 1 if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w, x) \neq \kappa(w, y)$. So $W := V(G) \setminus \{x, y\}$ is a resolving set for G and thus $\operatorname{cdim}(G) \leq n-2$.

A connected graph G on n vertices has cdim(G) = n - 1 if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w, x) \neq \kappa(w, y)$. So $W := V(G) \setminus \{x, y\}$ is a resolving set for G and thus $\operatorname{cdim}(G) \leq n-2$.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set $W \subseteq V(G)$ with $|W| \leq n-2$.

A connected graph G on n vertices has cdim(G) = n - 1 if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w, x) \neq \kappa(w, y)$. So $W := V(G) \setminus \{x, y\}$ is a resolving set for G and thus $\operatorname{cdim}(G) \leq n-2$.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set $W \subseteq V(G)$ with $|W| \leq n-2$. Denoting two vertices in $V(G) \setminus W$ by x and y, we obtain

$$r(x,W) = [k,\ldots,k] = r(x,W).$$

So W cannot be resolving for G and cdim(G) = n - 1.

ECHNISCHE

A connected graph G on n vertices has cdim(G) = n - 1 if and only if G is uniformly k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices $w, x, y \in V(G)$ with $\kappa(w, x) \neq \kappa(w, y)$. So $W := V(G) \setminus \{x, y\}$ is a resolving set for G and thus $\operatorname{cdim}(G) \leq n-2$.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set $W \subseteq V(G)$ with $|W| \leq n-2$. Denoting two vertices in $V(G) \setminus W$ by x and y, we obtain

$$r(x,W) = [k,\ldots,k] = r(x,W).$$

So W cannot be resolving for G and cdim(G) = n - 1.

Open Problems.

- How to characterize graphs with connectivity dimension *n* − 2?
- How to characterize graphs with connectivity dimension 2?
- How to characterize graphs with connectivity dimension k?

Example. Consider the threshold graph G generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

TECHNISCHE

JNIVERSITÄT

Example. Consider the threshold graph G generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

FRIIN

Example. Consider the threshold graph ${\it G}$ generated by the sequence

 $\epsilon, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}.$

Example. Consider the threshold graph ${\it G}$ generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

Example. Consider the threshold graph ${\it G}$ generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

TECHNISCHE

JNIVERSITÄT

Example. Consider the threshold graph G generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

TECHNISCHE

JNIVERSITÄT

Example. Consider the threshold graph G generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

TECHNISCHE

UNIVERSITÄT

Example. Consider the threshold graph G generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

 threshold graphs are maximally local connected¹, i.e. they satisfy
 κ(x, y) = min{deg(x), deg(y)} for all vertices x, y ∈ V(G).

¹ see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]

Example. Consider the threshold graph G generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

threshold graphs are maximally local connected¹, i. e. they satisfy

 $\kappa(x, y) = \min\{\deg(x), \deg(y)\} \text{ for all vertices } x, y \in V(G).$

• $\{v_1, v_6\}$ is resolving for *G*

¹ see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]

Example. Consider the threshold graph G generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

threshold graphs are maximally local connected¹, i.e. they satisfy

 $\kappa(x,y) = \min\{\deg(x), \deg(y)\} \text{ for all vertices } x, y \in V(G).$

- $\{v_1, v_6\}$ is resolving for *G*
- there is a graph with connectivity dimension 2 for any $n \ge 3$

¹ see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]

Example. Consider the threshold graph G generated by the sequence

 $\epsilon, 1, 0, 1, 0, 1.$

• threshold graphs are maximally local connected¹, i.e. they satisfy

 $\kappa(x, y) = \min\{\deg(x), \deg(y)\} \text{ for all vertices } x, y \in V(G).$

- $\{v_1, v_6\}$ is resolving for *G*
- there is a graph with connectivity dimension 2 for any $n \ge 3$
- there is a graph with connectivity dimension k for any $n \ge k+1$

¹ see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]

TECHNISCHE

UNIVERSITÄT

Let G be the threshold graph of order n generated by the sequence

$$x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}, \quad x_i\in\{0,1\}, x_m=1, k_1\geq 2.$$

Then

$$\mathsf{cdim}(G) = \begin{cases} n-m & \text{if } k_m > 1, \\ n-m+1 & \text{if } k_m = 1. \end{cases}$$

TECHNISCHE

UNIVERSITÄT

Let G be the threshold graph of order n generated by the sequence

$$x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}, \quad x_i\in\{0,1\}, x_m=1, k_1\geq 2.$$

Then

$$\mathsf{cdim}(G) = \begin{cases} n-m & \text{if } k_m > 1, \\ n-m+1 & \text{if } k_m = 1. \end{cases}$$

Corollary.

For every $\varepsilon > 0$ there is a graph G and an induced subgraph H such that

$$\frac{\operatorname{cdim}(G)}{\operatorname{cdim}(H)} < \varepsilon.$$

ECHNISCHE

NIVERSITÄT

Let G be the threshold graph of order n generated by the sequence

$$x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}, \quad x_i\in\{0,1\}, x_m=1, k_1\geq 2.$$

Then

$$\mathsf{cdim}(G) = \begin{cases} n-m & \text{if } k_m > 1, \\ n-m+1 & \text{if } k_m = 1. \end{cases}$$

Corollary.

For every $\varepsilon > 0$ there is a graph G and an induced subgraph H such that

$$\frac{\operatorname{cdim}(G)}{\operatorname{cdim}(H)} < \varepsilon.$$

Proof. Choose G to be the threshold graph with sequence 0101...01, of order 2n.

Let G be the threshold graph of order n generated by the sequence

$$x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}, \quad x_i\in\{0,1\}, x_m=1, k_1\geq 2.$$

Then

$$\mathsf{cdim}(G) = \begin{cases} n-m & \text{if } k_m > 1, \\ n-m+1 & \text{if } k_m = 1. \end{cases}$$

Corollary.

For every $\varepsilon > 0$ there is a graph G and an induced subgraph H such that

$$\frac{\operatorname{cdim}(G)}{\operatorname{cdim}(H)} < \varepsilon.$$

Proof. Choose *G* to be the threshold graph with sequence 0101...01, of order 2*n*. Deleting all vertices corresponding to zeros in the sequence results in $H = K_n$ as an induced subgraph of *G*. We have $\operatorname{cdim}(G) = 2$ and $\operatorname{cdim}(H) = n - 1$.

Determining a Graph's Connectivity Dimension

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

Proof Idea. The problem is in NP.

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

TECHNISCHE

NIVERSITÄT

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

TECHNISCHE

INIVERSITÄT

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

TECHNISCHE

JNIVERSITÄT

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

TECHNISCHE

NIVERSITÄT

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

TECHNISCHE

NIVERSITÄT

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

TECHNISCHE

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

ECHNISCHE

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

Proof Idea. The problem is in *NP*. The *NP*-completeness can be shown by a reduction to 3-SAT. Consider, for example, the clause $x_1 \vee \overline{x_2} \vee x_3$. We construct a graph *G* as follows. at least one of the at least one o

ECHNISCHE

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

Proof Idea. The problem is in *NP*. The *NP*-completeness can be shown by a reduction to 3-SAT. Consider, for example, the clause $x_1 \vee \overline{x_2} \vee x_3$. We construct a graph *G* as follows. T T F

• If the given 3-SAT instance is satisfiable, then cdim(G) = 2(m+n).

Given a graph G and an integer k, deciding whether $cdim(G) \le k$ is NP-complete.

Proof Idea. The problem is in *NP*. The *NP*-completeness can be shown by a reduction to 3-SAT. Consider, for example, the clause $x_1 \vee \overline{x_2} \vee x_3$. We construct a graph *G* as follows. T T F

- If the given 3-SAT instance is satisfiable, then cdim(G) = 2(m+n).
- If cdim(G) = 2(m+n), then the corresponding 3-SAT instance is satisfiable.

Conclusion and Outlook

TECHNISCHE UNIVERSITÄT

RIIN

- Determining the connectivity dimension is *NP*-complete.
- Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

NIVERSITÄT

- Determining the connectivity dimension is *NP*-complete.
- Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

Open Problems.

- Are there good approximation algorithms for the specific case?
- What information is in the landmarks?

- Determining the connectivity dimension is *NP*-complete.
- Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

Open Problems.

- Are there good approximation algorithms for the specific case?
- What information is in the landmarks?

Structural Results.

- The connectivity dimension measures graph heterogeneity.
- We characterized graphs with cdim(G) = 1 and cdim(G) = n 1.

- Determining the connectivity dimension is *NP*-complete.
- Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

Open Problems.

- Are there good approximation algorithms for the specific case?
- What information is in the landmarks?

Structural Results.

- The connectivity dimension measures graph heterogeneity.
- We characterized graphs with cdim(G) = 1 and cdim(G) = n − 1.

Open Problems.

- How to characterize graphs with connectivity dimension n 2, 2, or general k?
- How is the connectivity dimension related to other graph parameters?

Preprint

Kurt Klement Gottwald, Tobias Hofmann, The connectivity dimension of a graph, 2024+.

- Gary Chartrand, Linda Eroh, Mark A Johnson, and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3):99–113, 2000.
- Peter L. Hammer, Toshihide Ibaraki, and Bruno Simeone. Threshold sequences. SIAM Journal on Algebraic Discrete Methods, 2(1):39–49, 1981.
- [3] Frank Harary and Robert A. Melter. On the metric dimension of a graph. Ars Combinatorica, 2(191-195):1, 1976.
- [4] Tobias Hofmann. On pairwise graph connectivity. Chemnitz University of Technology, 2023.
- [5] Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in graphs. Discrete Applied Mathematics, 70(3):217–229, 1996.
- [6] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM (JACM), 41(5):960–981, 1994.