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The metric dimension.

Given a graph, how many landmarks
have to be placed such that a subject can localize itself

just by knowing its distances to the landmarks?

Literature.

= Harary and Melter [3]
= Khuller, Raghavachari, and Rosenfeld [5]

= Chartrand, Eroh, Johnson, and Oellermann [1]

Terminology.

= we consider nonempty, finite, simple, undirected graphs
= x(x,y) denotes the number of independent paths between two vertices x and y

= k(x,x) = oo for all vertices x.
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Definition.

Given an ordered subset W = {wx, ..., wk} of vertices of a graph G, the

= connectivity representation of a vertex x € V(G) is the vector
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W = {v1, va, vg } is not resolving
r(V27 W) = [1727 1]
r(vs, W) =[1,2,1]

X = {w2, vs, v7 } is resolving, but not a basis

Definition.

Given an ordered subset W = {wx, ..., wk} of vertices of a graph G, the

= connectivity representation of a vertex x € V(G) is the vector
r(x, W) = [c(x,w1), ..., k(x, wk)].
= W is resolving for G if
r(x, W)=r(y,W) = x=y forallx,ye V(G).

= A connectivity basis is a resolving set of minimum cardinality and the
connectivity dimension cdim(G) of G is the cardinality of a basis of G.

Tobias Hofmann, TU Berlin 319



-. s \ Introduction
BERLIN

X = {w2, vs, v7} is not a basis, but B = {vs, g} is
I’(V1,B):[1,1], r(V2,B):[3, 1]

I’(V37B):[OO71], r(V4aB):[27 1]
r(vs,B) = [4,1], r(ve,B) =][3,2]
r(V7aB):[172]7 I‘(Vg,B):[l,OO]
Definition.
Given an ordered subset W = {wx, ..., wk} of vertices of a graph G, the

= connectivity representation of a vertex x € V(G) is the vector
r(x, W) = [c(x,w1), ..., k(x, wk)].
= W is resolving for G if
r(x, W)=r(y,W) = x=y forallx,ye V(G).

= A connectivity basis is a resolving set of minimum cardinality and the
connectivity dimension cdim(G) of G is the cardinality of a basis of G.
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Observation.

The set V(G) \ {w}, w € V(G), is resolving for any connected graph G. Thus
0 <cdim(G) <n-—1.

Proposition.

A connected graph G has cdim(G) =1 if and only if G = K>.

Proof. Clearly, cdim(K>) = 1. To show: This is the only such graph.
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Observation.

The set V(G) \ {w}, w € V(G), is resolving for any connected graph G. Thus
0 <cdim(G) <n-—1.

Proposition.

A connected graph G has cdim(G) =1 if and only if G = K>.

Proof. Assume there is another connected graph G, on n > 3 vertices, having a
resolving set W = {w}, w € V(G) ={w = wv1,...,vp}.
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Observation.

The set V(G) \ {w}, w € V(G), is resolving for any connected graph G. Thus
0 <cdim(G) <n-—1.

Proposition.
A connected graph G has cdim(G) =1 if and only if G = K>.

Proof. Assume there is another connected graph G, on n > 3 vertices, having a
resolving set W = {w}, w € V(G) = {w = w1,..., v,y }. Since k(x, y) takes values only
in {0,...,n— 1}, if there is any chance that W could be resolving, then

F(vi, W) = [s(vi, w)] = [oc],
r(vo, W) = [i(va w)] = [1],

r(va, W) = [#(va,w)] = [n—1], for an appropriate labeling of vertices.
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Observation.

The set V(G) \ {w}, w € V(G), is resolving for any connected graph G. Thus
0 <cdim(G) <n-—1.

Proposition.

A connected graph G has cdim(G) =1 if and only if G = K>.

Proof. Assume there is another connected graph G, on n > 3 vertices, having a
resolving set W = {w}, w € V(G) = {w = w1,..., v,y }. Since k(x, y) takes values only
in {0,...,n— 1}, if there is any chance that W could be resolving, then

(v, W) = (v, w)] = [5<],
rva, W) = [n(uvz, w)] = [1],
r(va, W) = [#(va,w)] = [n—1], for an appropriate labeling of vertices.

= But k(va, w) = n — 1 says that v, and w are adjacent to all other vertices.

= We obtain two independent paths vow and vav,w, contradicting x(v2, w) = 1. O

Tobias Hofmann, TU Berlin 419
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Proposition.

A connected graph G on n vertices has cdim(G) = n — 1 if and only if G is uniformly
k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices w, x,y € V(G) with
K(w, x) # K(w, y).
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Proposition.

A connected graph G on n vertices has cdim(G) = n — 1 if and only if G is uniformly
k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices w, x,y € V(G) with
k(w, x) # k(w,y). So W= V(G) \ {x,y} is a resolving set for G and thus
cdim(G) < n-—2.

Tobias Hofmann, TU Berlin 5]9



.'Eiﬁ??&iﬁ'ﬁ? ‘ A Measure of Graph Heterogeneity

BERLIN

Proposition.

A connected graph G on n vertices has cdim(G) = n — 1 if and only if G is uniformly
k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices w, x,y € V(G) with
k(w, x) # k(w,y). So W= V(G) \ {x,y} is a resolving set for G and thus
cdim(G) < n-—2.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set
W C V(G) with |[W| < n-—2.
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Proposition.

A connected graph G on n vertices has cdim(G) = n — 1 if and only if G is uniformly
k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices w, x,y € V(G) with
k(w, x) # k(w,y). So W= V(G) \ {x,y} is a resolving set for G and thus
cdim(G) < n-—2.
Now suppose that G is uniformly k-connected and consider an arbitrary vertex set
W C V(G) with |W| < n — 2. Denoting two vertices in V(G)\ W by x and y, we
obtain

r(x, W) = [k,..., k] = r(x, W).

So W cannot be resolving for G and cdim(G) = n— 1. O
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Proposition.

A connected graph G on n vertices has cdim(G) = n — 1 if and only if G is uniformly
k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices w, x,y € V(G) with
k(w, x) # k(w,y). So W= V(G) \ {x,y} is a resolving set for G and thus
cdim(G) < n-—2.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set
W C V(G) with |W| < n — 2. Denoting two vertices in V(G)\ W by x and y, we

obtain
r(x, W) = [k,..., k] = r(x, W).

So W cannot be resolving for G and cdim(G) = n— 1. O
Open Problems.

= How to characterize graphs with connectivity dimension n — 27

= How to characterize graphs with connectivity dimension 27

= How to characterize graphs with connectivity dimension k?
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Example. Consider the threshold graph G generated by the sequence

€,1,0,1,0,1.

= threshold graphs are maximally local connected?, i.e. they satisfy

k(x,y) = min{deg(x),deg(y)} for all vertices x,y € V(G).

! see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]
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Example. Consider the threshold graph G generated by the sequence

€,1,0,1,0,1.

= threshold graphs are maximally local connected?, i.e. they satisfy
k(x,y) = min{deg(x),deg(y)} for all vertices x,y € V(G).

= {vi, v} is resolving for G

= there is a graph with connectivity dimension 2 for any n > 3

! see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]
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Example. Consider the threshold graph G generated by the sequence

€,1,0,1,0,1.

= threshold graphs are maximally local connected?, i.e. they satisfy
k(x,y) = min{deg(x),deg(y)} for all vertices x,y € V(G).

= {vi, v} is resolving for G

= there is a graph with connectivity dimension 2 for any n > 3

= there is a graph with connectivity dimension k for any n > k+1

! see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]

Tobias Hofmann, TU Berlin 69
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Proposition.
Let G be the threshold graph of order n generated by the sequence

X1k1X2kQ .. ,X,I;,’”7 xi €{0,1}, xm =1,k > 2.

Then

_ if k> 1,
cdim(G)—{n m I -

n—m+1 if kp=1.
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Proposition.

Let G be the threshold graph of order n generated by the sequence

X1k1X2kQ .. .X,I;,’”7 xi €{0,1}, xm =1,k > 2.
Then
— if km > 1,
cdim(G) = nem I -
n—m+1 if kp=1.
Corollary.

For every € > 0 there is a graph G and an induced subgraph H such that
cdim(G)
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Proposition.

Let G be the threshold graph of order n generated by the sequence

X1k1X2kQ .. .X,I;,’”7 xi €{0,1}, xm =1,k > 2.
Then
— if km > 1,
cdim(G) = nem I -
n—m+1 if kp=1.
Corollary.

For every € > 0 there is a graph G and an induced subgraph H such that
cdim(G)

cdim(H)

Proof. Choose G to be the threshold graph with sequence 0101...01, of order 2n.
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Proposition.

Let G be the threshold graph of order n generated by the sequence

X1k1X2kQ .. .X,I;,’”7 xi €{0,1}, xm =1,k > 2.
Then
— if km > 1,
cdim(G) = nem I -
n—m+1 if kp=1.
Corollary.

For every € > 0 there is a graph G and an induced subgraph H such that
cdim(G)

cdim(H)

Proof. Choose G to be the threshold graph with sequence 0101...01, of order 2n.
Deleting all vertices corresponding to zeros in the sequence results in H = K, as an
induced subgraph of G. We have cdim(G) = 2 and cdim(H) = n — 1. O

Tobias Hofmann, TU Berlin 719
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Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.
Proof Idea. The problem is in NP.
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Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X2 V x3. We construct a graph G as
follows.
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Proposition.

Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X; V x3. We construct a graph G as

follows.
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Proposition.

Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X2 V x3. We construct a graph G as

follows.
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Proposition.

Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X2 V x3. We construct a graph G as

follows. at least one of at least one of at least one of
Q 0 Q ® Q 0
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= Any connectivity basis contains. ..
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Proposition.

Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X2 V x3. We construct a graph G as
follows. at least one of at least one of at least one of

W W

= Any connectivity basis contains. ..
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Proposition.

Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X2 V x3. We construct a graph G as
follows. at least one of at least one of at least one of

= Any connectivity basis contains. ..
and at least two vertices of any
variable gadget = cdim(G) >2(m+n),
where m = #£clauses, n := #variables.
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Proposition.
Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X2 V x3. We construct a graph G as
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Proposition.
Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X2 V x3. We construct a graph G as

= Any connectivity basis contains. ..
and at least two vertices of any
variable gadget = cdim(G) >2(m+n),
where m = #£clauses, n := #variables.

= If the given 3-SAT instance is satisfiable, then cdim(G)=2(m+n).
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Proposition.

Given a graph G and an integer k, deciding whether cdim(G) < k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x; V X2 V x3. We construct a graph G as

= Any connectivity basis contains. ..
and at least two vertices of any
variable gadget = cdim(G) >2(m+n),
where m = #£clauses, n := #variables.

= If the given 3-SAT instance is satisfiable, then cdim(G)=2(m+n).

= If cdim(G)=2(m+n), then the corresponding 3-SAT instance is satisfiable. [

Tobias Hofmann, TU Berlin 819
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Algorithmic Results.

= Determining the connectivity dimension is NP-complete.

= Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

Tobias Hofmann, TU Berlin 919



BERLIN

"Eif.cg”éiﬁ'ii ‘ Conclusion and Outlook

Algorithmic Results.

= Determining the connectivity dimension is NP-complete.

= Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

Open Problems.

= Are there good approximation algorithms for the specific case?

=  What information is in the landmarks?

Tobias Hofmann, TU Berlin 919



BERLIN

"Eif.cg”éiﬁ'ﬁ ‘ Conclusion and Outlook

Algorithmic Results.

= Determining the connectivity dimension is NP-complete.

= Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

Open Problems.

= Are there good approximation algorithms for the specific case?

=  What information is in the landmarks?

Structural Results.

= The connectivity dimension measures graph heterogeneity.
= We characterized graphs with cdim(G) = 1 and cdim(G) = n — 1.

Tobias Hofmann, TU Berlin 919



BERLIN

.,Liﬁ:?&:.‘&i ‘ Conclusion and Outlook

Algorithmic Results.

= Determining the connectivity dimension is NP-complete.

= Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

Open Problems.
= Are there good approximation algorithms for the specific case?
= What information is in the landmarks?

Structural Results.

= The connectivity dimension measures graph heterogeneity.
= We characterized graphs with cdim(G) = 1 and cdim(G) = n — 1.

Open Problems.

= How to characterize graphs with connectivity dimension n — 2,2, or general k?

= How is the connectivity dimension related to other graph parameters?

Tobias Hofmann, TU Berlin 919
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