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Introduction

The metric dimension.

Given a metric space, how many landmarks
have to be placed such that a subject can localize itself

just by knowing its distances to the landmarks?

Literature.

◾ Harary and Melter [3]
◾ Khuller, Raghavachari, and Rosenfeld [5]
◾ Chartrand, Eroh, Johnson, and Oellermann [1]

Terminology.

◾ we consider nonempty, finite, simple, undirected graphs
◾ κ(x , y) denotes the number of independent paths between two vertices x and y
◾ κ(x , x) := ∞ for all vertices x .
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Introduction

W = {v1, v4, v8}

is not resolving
r(v2, W ) = [1, 2, 1]
r(v3, W ) = [1, 2, 1]

X = {v2, v5, v7} is resolving

, but not a basis

X = {v2, v5, v7} is not a basis, but B = {v3, v8} is
r(v1, B) = [1, 1], r(v2, B) = [3, 1]
r(v3, B) = [∞, 1], r(v4, B) = [2, 1]
r(v5, B) = [4, 1], r(v6, B) = [3, 2]
r(v7, B) = [1, 2], r(v8, B) = [1, ∞]

v1
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v5
v6 v7

v8

Definition.

Given an ordered subset W = {w1, . . . , wk} of vertices of a graph G , the
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Given an ordered subset W = {w1, . . . , wk} of vertices of a graph G , the
◾ connectivity representation of a vertex x ∈ V (G) is the vector
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◾ W is resolving for G if

r(x , W ) = r(y , W ) ⇒ x = y for all x , y ∈ V (G).
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A Measure of Graph Heterogeneity

Observation.

The set V (G) \ {w}, w ∈ V (G), is resolving for any connected graph G . Thus
0 ≤ cdim(G) ≤ n − 1.

Proposition.

A connected graph G has cdim(G) = 1 if and only if G = K2.

Proof. Assume there is another connected graph G , on n ≥ 3 vertices, having a
resolving set W = {w}, w ∈ V (G) = {w = v1, . . . , vn}. Since κ(x , y) takes values only
in {0, . . . , n − 1}, if there is any chance that W could be resolving, then

r(v1, W ) = [κ(v1, w)] = [∞],
r(v2, W ) = [κ(v2, w)] = [1],...
r(vn, W ) = [κ(vn, w)] = [n − 1], for an appropriate labeling of vertices.

◾ But κ(vn, w) = n − 1 says that vn and w are adjacent to all other vertices.
◾ We obtain two independent paths v2w and v2vnw , contradicting κ(v2, w) = 1. □
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A Measure of Graph Heterogeneity

Proposition.

A connected graph G on n vertices has cdim(G) = n − 1 if and only if G is uniformly
k-connected.

Proof. If G is not uniformly k-connected, then there exist vertices w , x , y ∈ V (G) with
κ(w , x) ̸= κ(w , y). So W := V (G) \ {x , y} is a resolving set for G and thus
cdim(G) ≤ n − 2.

Now suppose that G is uniformly k-connected and consider an arbitrary vertex set
W ⊆ V (G) with |W | ≤ n − 2. Denoting two vertices in V (G) \ W by x and y , we
obtain

r(x , W ) = [k, . . . , k] = r(x , W ).

So W cannot be resolving for G and cdim(G) = n − 1. □

Open Problems.

◾ How to characterize graphs with connectivity dimension n − 2?
◾ How to characterize graphs with connectivity dimension 2?
◾ How to characterize graphs with connectivity dimension k?
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Graphs with Given Connectivity Dimension

Example. Consider the threshold graph G generated by the sequence

ϵ, 1, 0, 1, 0, 1.

v1 v2 v3

v4

v5

v6

◾ threshold graphs are maximally local connected1, i. e. they satisfy
κ(x , y) = min{deg(x), deg(y)} for all vertices x , y ∈ V (G).

◾ {v1, v6} is resolving for G
◾ there is a graph with connectivity dimension 2 for any n ≥ 3
◾ there is a graph with connectivity dimension k for any n ≥ k + 1

1 see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]
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1 see Hammer, Ibaraki, and Simeone [2] or Hofmann [4]
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Graphs with Given Connectivity Dimension

Proposition.

Let G be the threshold graph of order n generated by the sequence

x k1
1 x k2

2 . . . x km
m , xi ∈ {0, 1}, xm = 1, k1 ≥ 2.

Then

cdim(G) =
{

n − m if km > 1,

n − m + 1 if km = 1.

Corollary.

For every ε > 0 there is a graph G and an induced subgraph H such that
cdim(G)
cdim(H) < ε.

Proof. Choose G to be the threshold graph with sequence 0101...01, of order 2n.
Deleting all vertices corresponding to zeros in the sequence results in H = Kn as an
induced subgraph of G . We have cdim(G) = 2 and cdim(H) = n − 1. □
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Determining a Graph’s Connectivity Dimension

Proposition.

Given a graph G and an integer k, deciding whether cdim(G) ≤ k is NP-complete.

Proof Idea. The problem is in NP. The NP-completeness can be shown by a reduction
to 3-SAT. Consider, for example, the clause x1 ∨ x2 ∨ x3. We construct a graph G as
follows.

u1

u1

v1

at least one of T T F

u2

u2

v2

at least one of

u3 v3

v3

at least one of

c1 c2

exactly two of

◾ Any connectivity basis contains . . .
and at least two vertices of any
variable gadget ⇒cdim(G)≥2(m+n),
where m := #clauses, n := #variables.

◾ If the given 3-SAT instance is satisfiable, then cdim(G)=2(m+n).
◾ If cdim(G)=2(m+n), then the corresponding 3-SAT instance is satisfiable. □
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Conclusion and Outlook

Algorithmic Results.

◾ Determining the connectivity dimension is NP-complete.
◾ Set cover formulation yields approximation algorithms; Lund and Yannakakis [6].

Open Problems.

◾ Are there good approximation algorithms for the specific case?
◾ What information is in the landmarks?

Structural Results.

◾ The connectivity dimension measures graph heterogeneity.
◾ We characterized graphs with cdim(G) = 1 and cdim(G) = n − 1.

Open Problems.

◾ How to characterize graphs with connectivity dimension n − 2, 2, or general k?
◾ How is the connectivity dimension related to other graph parameters?
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