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The Szeged polynomial

@ G connected graph with at least two vertices.
e For e = uv € E(G):

Ny(e|G) = {x e V(G)]| dg(u,x) < dg(v,x)},
Ny(e]G) = {xe V(G)|dg(v,x) < dg(u,x)}.

o ny(e) = |Ny(elG)],
ny(e) = [Ny(e|G)].
@ The Szeged index of G (Gutman, 1994):

5z(G) = Z ny(e)ny(e).

e=uveE(G)
e The Szeged polynomial of G (Ashrafi, et. al., 2007):

Sz(G,x) = Z x"u(e)nv(e)
e=uveE(G)
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Weighted-product and weighted-plus Szeged polynomial

e weighted-product Szeged polynomial (Ashrafi, et. al.,
2007):

wSz1(G, x) = Z deg(u) deg(v)x”“(e)”"(e)'
e=uveE(G)

o weighted-plus Szeged polynomial (B., et. al., 2023):

wSz(G,x) = > (deg(u) + deg(v))x(e)n(e),
e=uveE(G)

e Mostar polynomial (Ali, Dosli¢, 2021):

Mo(Gx)= Y xieniel
e=uveE(G)
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Polynomials vs. indices

Note, that

Sz(G) = SZ'(G,1), wSz(G) = wSz(G,1),
wSz(G) = wSZ5(G, 1), Mo(G) = Md'(G,1).
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Some known families

Proposition (Szeged: A. R. Ashrafi et. al., 2007)

If C, is a cycle on n > 3 vertices, then

n2
nxw+4; n even
SZ(C,,,X) = (n—1)2 >
nx 4 ; nodd
n2
dnx+; n even
wSz1(Cp, x) = wS22(Cpyx) = (n-1)?

Mo(Cpn,x) = n.
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Some known families

Proposition (Szeged: A. R. Ashrafi et. al., 2007)

If S, is a star on n -+ 1 vertices, where n > 1, then
Sz(Sp,x) = nx",
wSz1 (S, x) = n*x",
wSzy(Sp,x) = n(n+1)x",
Mo(S,,x) = nx" L.
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Some known families

Proposition (Szeged: A. R. Ashrafi et. al., 2007)

If K, is a complete graph on n > 2 vertices, then

Sz(Kp,x) = (g) X,

wSz1(Kn, x) = (g)(n—1)2x,

wSz(Kpn, x) = 2<g>(n—1)x,
Mo(Kp, x) = (g)
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Some known families

Proposition (Szeged: A. R. Ashrafi et. al., 2007 -

If W, is a wheel on n+ 1 vertices, where n > 3, then

( ) = nx""2 4 nx*,

wSz (W, x) = 3n°x""2 + 9nx*,
( ) n(n+3)x""2 + 6nx*,
( ) n-3

= n+ nx
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Some known families

Proposition (Szeged: A. R. Ashrafi et. al.,

2007)

If P, is a path on n > 3 vertices, then

Se(Payx) = 1
= 1
2(1(n 0,202 4TS %)
(+)
% 4x2(=2) o4\ 2
w8z (Pn,x) =
n—1 n+tl
8(1 L(n=1) |, 20-2) ... 7
(1)
3= g 2(0-2) 4y (2
WSz3(Payx) =
—1 1
3 =1 2n—2) . A a
Mo(Py, x) 1+ 2x2 1+x + x4 +~~~+x"74); n even
X =
n x1+x +x¥ 4. "73); n odd

n even

n odd

n even

n odd
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Roots of polynomials

S5z*(G,x) = 1-5z(G,x),
wSz; (G,x) = 1—wSz(G,x),
wSz5(G,x) = 1—wSz(G,x),
Mo*(G,x) = 1—xMo(G,x).

Lemma (Dehmer et. al., 2020)

If P(x) = p1x + pax? + - - 4+ pax" is a polynomial where n € N,
pi € [0,00) forany i€ {1,...,n}, and p1+po+- -+ pn>1,
then the polynomial Q(x) =1 — P(x) has exactly one positive
root. Moreover, the unique positive root § of Q(x) belongs to the
interval (0,1]. Furthermore, 6 =1 if and only if
pr+p2+---+pn=1

—— == =
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Roots of polynomials

S5z*(G,x) = 1-5z(G,x),
wSz; (G,x) = 1—wSz(G,x),
wSz5(G,x) = 1—wSz(G,x),
Mo*(G,x) = 1—xMo(G,x).

Lemma (Dehmer et. al., 2020)

If P(x) = p1x + pax? + - - 4+ pax" is a polynomial where n € N,
pi € [0,00) forany i€ {1,...,n}, and p1+po+- -+ pn>1,
then the polynomial Q(x) =1 — P(x) has exactly one positive
root. Moreover, the unique positive root § of Q(x) belongs to the
interval (0,1]. Furthermore, 6 =1 if and only if
pr+p2+---+pn=1

Proof: Vx € (0,00], Q'(x) < 0,1—P(0) >0,1—P(1) <O.

———r = =
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Analytical results




Another way to write down the polynomials

EZ(G) = {e=uveE(G)]| nie)n,(e) =k},
EZ(G) = {e=uveE(G)] |n,(e)—n,(e)=k—1}.

Moreover, for any k > 1 let

a(G) = |EX(G),

b(G) = > (deg(u)deg(v)),
e=uve€E(G)

a(G) = Y (deg(u)+deg(v)),
e=uveE}(G)

d(G) = |EZ(G)].
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Another way to write down the polynomials

Then, the polynomials can be defined as:

Sz(G,x) = Z a(G)x*,  wSz(G,x) = Z bi(G)x*,

k>1 k>1
wSz(G,x) = > a(G)x*,  Mo(G,x) = di(G)x**
k>1 k>1
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A(G) = max{ax(G)
C(G) = max{ck(G)

If G is a connected graph with at least two vertices, then
5(52°(G, %)) > —— S(WSZH(G, X)) > ——
Z X AG)+1’ 1A= B(G)+ 1’
x 1l . 1
6(WSZ2(G,X)) > W, 5(/\/’0 (G,X)) > D(G) 1
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Proof for 6(5z*(G, x)) = 4:
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Proof for 6(5z*(G, x)) = 4:

1=52(G,0)=)_ a(G)s

k>1

Simon Brezovnik Szeged and Mostar root-indices of graphs



Proof for 6(5z*(G, x)) = 4:

1=52(G,8) = > a(G)s* < Y A(G)s*

k>1 k>1
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Proof for 6(5z*(G, x)) = 4:

1=52(G,0) =Y a(G)s* < > A(G)s* = A(G) iak
k=1

k>1 k>1
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Proof for 6(5z*(G, x)) = 4:

>

1=52(G,0) =Y a(G)o* < > A(G)s¥ Zék —5

k>1 k>1
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Proof for 6(5z*(G, x)) = 4:

>

1=52(G,0) =Y a(G)o* < > A(G)s¥ Zék —5

k>1 k>1

which gives the claimed inequality.
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Figure: Molecular graph G of anthracene.

E§(G) = {e1, e, 5,65 67,68 €11, €12},
Ef(G) = {fi,fo.f,fa €31, €10}
do(G) = 8,d1(G) =8
Mo(G,x) =8 + 8x8

Then
d(Mo*(G, x)) = 0.12500.

On the other hand, D(G) = 8, therefore, §(Mo*(G,x)) > 5.



Root-indices of basic graph families

Proposition

If K, is a complete graph on n > 2 vertices, then
852 (Knx) = ——s
z n;X - n(n . 1)7
. _ 2
5(W521(Kn,X)) = m,
B 1
6(wSz;3(Kn, x)) = m,
N 2
5(’\/’0 (Kn,X)) = m
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Root-indices of basic graph families

Proposition

If C, is a cycle on n > 3 vertices, then

(S5z*(Cp, x)) =

d(Mo*(Cpn,x)) =

d(wSz; (Cp, x)) = 6(wSz5(Cp, x)) = {
1
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Root-indices of basic graph families

Proposition
If S, is a star on n -+ 1 vertices, where n > 1, then
5(Sz*(Smyx)) = nn,
S(WSZ (S, X)) = n7 7,
5(WSz5(Smyx)) = (n(n+1))"4,
d(Mo*(Sp,x)) = N )
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Root-indices of basic graph families

Let n > 3 and ¢, = 6(P(W,, x)), where
P* € {Sz*, wSzf, wSz3, Mo*}. Then the sequence (c,) converges
to 0.
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Root-indices of basic graph families

Let n > 2 be an even number and let ¢, = §(Mo*(Pp, x)). Then
¢ =1, cs =0.58975, the sequence (cy,) is strictly decreasing, and
the limit ¢ = ILm Cn is

n o0

1 2
=3 (—1 S i 3\/?3) = 0.54369.

o/17 + 3v/33
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Root-indices of basic graph families

Let n > 2 be an even number and let ¢, = §(Mo*(Pp, x)). Then
¢ =1, cs =0.58975, the sequence (cy,) is strictly decreasing, and
the limit ¢ = ILm Cn is

n o0

1 2
=3 (—1 S i 3\/?3) = 0.54369.

o/17 + 3v/33

Prooft | 231+ +-+ ) =1,

iz + 260 (L+Chp+ e+ ens) =1
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Root-indices of basic graph families

Let n > 2 be an even number and let ¢, = §(Mo*(Pp, x)). Then
¢ =1, cs =0.58975, the sequence (cy,) is strictly decreasing, and
the limit ¢ = ILm Cn is

n o0

1 2
=3 (—1 S i 3\/?3) = 0.54369.

o/17 + 3v/33

Prool: a1+ +-+ =1,

iz + 260 (L+Chp+ e+ ens) =1

= Vn, cpy2 < ¢y and (cp) is bounded = (c,) convergent.
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Root-indices of basic graph families

Let n >

¢ =1, cs =0.58975, the sequence (cy,) is strictly decreasing, and
the limit c = lim ¢, is
n—00

2 be an even number and let ¢, = §(Mo*(Pp, x)). Then

1 2
3 (—1 S i 3\/?3) = 0.54369.

Cc =
/17 +3+/33
Proof | 214+ 2+ + i) =1,
2+ 20mo(l+ it ens + Cr’;;zz) =1
= Vn, cpy2 < ¢y and (cp) is bounded = (c,) convergent.
1—cn2
¢ + 2C,3;(1+C,3+"'+C,7_4):Cn+2csl_7,;2:
n
1
c 4+ 23— =1, wherec= lim c,)
1—¢c2 n—o0
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Root-indices of basic graph families

Let n > 3 be an odd number and let ¢, = §(Mo*(Pp, x)). Then
c3 = 0.707107, the sequence (cy,) is strictly decreasing, and the
limit ¢ = nll_>rgo cp IS

c= = 0.57735.

©|S
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Computational results




Computational results

Correlation coefficients between indices and root-indices

@ N, T, ... the sets of all connected graphs and all trees on r
vertices, respectively.

graph class ‘ index ‘ root-index H correlation coefficient

4* Ny Sz d(5z*) 0.4904
wSz; | 0(wSzf) -0.3419
wSzy | 0(wSz3) -0.0619
Mo d(Mo*) 0.6711
4*Ty3 Sz 3(5z*) 0.9138
wSz; | 0(wSzy) -0.7815
wSzy | 0(wSz3) -0.6162
Mo | o(Mo") 0.8866
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Computational results

Correlation coefficients between root-indices

| graph class | root-index [ §(5z%) [ 6(wSz}) [ 0(wSz5) | 6(Mo*) |

3N, 3(5z") 3% | 0.8408 | 0.8728 | 0.4628
3(wSz) 0.0921 | 0.4645
d(wSzy) 0.4343
375, 3(5z") 3% | 09366 | 0.9450 | -0.5333
3(wSz) 0.0987 | -0.3955
d(wSz3) -0.3965
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Computational results
Discrimination

@ C ...any finite family of pairwise non-isomorphic graphs

@ T/ a topological index.

e N C C is the family of graphs that T/ cannot discriminate.
o N=|N|.

Definition (E.V. Konstantinova, 1996)

The discrimination D of T/ is

Cl =N

D(TI) = 4
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Computational results

Discrimination for the root-indices.

§(5z%) [ 5(wSz;) [ 5(wSz3) [ §(Mo™) |
[ graph class [ no. of graphs [ N [ D [ N [ D [ N [ D [ N [ D ]
all connected graphs
Ns 21 0 1.0000 0 1.0000 2 0.9048 0 1.0000
Ne 112 0 1.0000 0 1.0000 0 1.0000 14 0.8750
N7 853 30 0.9648 0 1.0000 0 1.0000 245 0.7128
Ng 11117 419 0.9623 44 0.9960 44 0.9960 6234 0.4392
all tree structures

Tg 23 6 0.7391 0 1.0000 0 1.0000 6 0.7391
Ty 47 25 0.4681 0 1.0000 2 0.9574 25 0.4681
T1o 106 59 0.4434 0 1.0000 6 0.9434 59 0.4434
T11 235 178 0.2426 4 0.9830 32 0.8638 179 0.2383
T2 551 445 0.1924 12 0.9782 94 0.8294 445 0.1924
T3 1301 1154 0.1130 74 0.9431 344 0.7356 1154 0.1130
Tia 3159 2884 0.0871 217 0.9313 975 0.6914 2884 0.0871
Tis 7741 7425 0.0408 870 0.8876 3140 0.5944 7426 0.0407
Ti6 19320 18650 0.0347 2474 0.8719 8626 0.5535 18650 0.0347
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Computational results

Discrimination for the corresponding indices

Sz [ wSz; [ wSzy [ Mo ]
| graph class | no. of graphs | N [ D [N [ D [ N [ D [ N [ D |
all connected graphs
Ns 21 14 0.3333 7 0.6667 10 0.5238 20 0.0476
Neg 112 97 0.1339 25 0.7768 71 0.3661 108 0.0357
N7 853 837 0.0188 510 0.4021 749 0.1219 849 0.0047
Ng 11117 11095 0.0020 10572 0.0490 11000 0.0105 11116 0.0001
all tree structures

Ts 23 6 0.7391 4 0.8261 12 0.4783 19 0.1739
Ty a7 39 0.1702 21 0.5532 28 0.4043 43 0.0851
T1o 106 83 0.2170 a7 0.5566 80 0.2453 102 0.0377
T11 235 221 0.0596 163 0.3064 214 0.0894 231 0.0170
T12 551 528 0.0417 378 0.3140 522 0.0526 547 0.0073
T13 1301 1286 0.0115 1205 0.0738 1258 0.0331 1297 0.0031
T1a 3159 3131 0.0089 2910 0.0788 3113 0.0146 3155 0.0013
Tis 7741 7724 0.0022 7608 0.0172 7693 0.0062 7737 0.0005
T1i6 19320 19289 0.0016 18985 0.0173 19257 0.0033 19316 0.0002
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Computational results
Structure sensitivity and abruptness

@ G € C and H(G) is the set of all pairwise non-isomorphic
graphs that can be obtained from G by inserting exactly one

edge.
o The structure sensitivity of a T/ for G, SSL(T/) (B. Furtula
et. al., 2013):
1 TI(G) — TI(H)
SSE(TI) = ‘
(= fe) , 2 |~ T0)

e The abruptness of a T/ for G, Abri(TI) (B. Furtula et. al,
2013):

Abri(TI) = T2
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Computational results

Modified structure sensitivity and modified abruptness

The modified structure sensitivity and the modified abruptness
of Tl for G (M. Raki¢, B. Furtula, 2019):

SSA(TI) = $’,H(lcﬂHg{:(c)(T/(G)—T/(H)){
Abrg(TI) = max_|TI(G) — TI(H)|.

HEH(G)
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Computational results

Modified structure sensitivity and modified abruptness

Finally, for i € {1,2}:

SSH(TI) = IC! > SSE(T),
GeC

Abrb(TI) = IC! > Abrg(TI).
GeC
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Computational results
Structure sensitivity and abruptness of root-indices

| root-index [ graph class (C) | SSt | S5 | Abrg | Abrz |

4%5(52%) Ts 0.0788 | 0.0767 | 0.1697 | 0.1351
To 0.0637 | 0.0657 | 0.1556 | 0.1263
Tio 0.0512 | 0.0560 | 0.1441 | 0.1188
T 0.0426 | 0.0491 | 0.1348 | 0.1126
4%5(wSz)) Ts 0.2630 | 0.2329 | 0.6311 | 0.4283
To 0.2289 | 0.2245 | 0.6439 | 0.4536
Tio 0.1941 | 0.2115 | 0.6545 | 0.4751
T 0.1698 | 0.2025 | 0.6629 | 0.4930
4%5(wSz}) Ts 0.2405 | 0.2110 | 0.6194 | 0.4076
To 0.2075 | 0.2044 | 0.6340 | 0.4345
Tio 0.1747 | 0.1929 | 0.6457 | 0.4571
Tu 0.1521 | 0.1851 | 0.6551 | 0.4760
4%5(Mo*) Ts 0.1838 | 0.1456 | 0.4360 | 0.2778
To 0.1610 | 0.1322 | 0.4162 | 0.2775
Tio 0.1632 | 0.1379 | 0.4684 | 0.3078
Tu 0.1431 | 0.1241 | 0.4267 | 0.2911
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Computational results

Conclusion

@ Focusing on the family of trees, novel root-indices correlate
well with the corresponding indices.

@ Novel descriptors possess significantly better discrimination
power than the corresponding indices.

@ The correlations between different versions of Szeged
root-indices are quite high.

@ The best performance was found for the weighted-product
Szeged root-index.

@ The Mostar root-index is weakly correlated to Szeged
root-indices.
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Computational results
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Computational results

Hvala! Thank you!

Simon Brezovnik Szeged and Mostar root-indices of graphs



	Computational results

