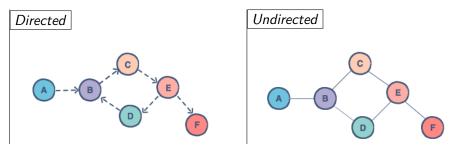

### Label Propagation Algorithm for Detecting Communities in Directed Acyclic Networks

Suzana Antunović

5th Croatian Combinatorial Days, Zagreb

## Graph vs. Network


#### "Network is a graph with meaning!"



CroCoDays 2024

イロト イポト イヨト イヨト

## Directed vs. Undirected



э

イロト イポト イヨト イヨト

## Directed acyclic network

Directed Acyclic Network

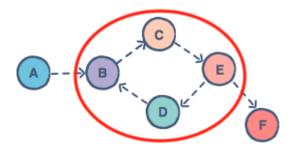
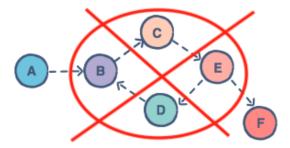
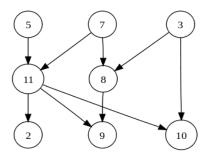




Image: A match a ma

## Directed acyclic network

Directed Acyclic Network



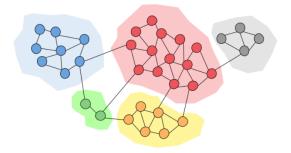

CroCoDays 2024

イロト イヨト イヨト

э

## **Topological ordering**

"Every DAN has a topological ordering."




- 5,7,3,11,8,2,9,10
- 3, 5, 7, 8, 11, 2, 9, 10
- 5,7,3,8,11,10,9,2
- 7,5,11,3,10,8,9,2
- 5,7,11,2,3,8,9,10
- 3,7,8,5,11,10,2,9

Image: A match a ma

## **Community detection**

"The problem of **community detection** relates to finding a natural division of the network into groups of vertices such that there are <u>many</u> edges within the community, and <u>several</u> edges between communities."



## Modularity

"**Modularity** measures the actual ratio of edges within the community reduced by the expected value in the null-model, where the division into communities is the same, but the edges between the vertices are placed randomly. "

$$Q_d = \frac{1}{m} \sum_{1 \le i,j \le n} \left[ A_{ij} - \frac{d^{in}(j)d^{out}(i)}{m} \right] \delta(l_i, l_j)$$

Image: A math a math

- G = directed acyclic network with n vertices and m directed edges
- it holds  $x_1 \prec x_2 \prec ... \prec x_n$  (topological order)

We are interested in finding communities  $C_1, C_2, ..., C_k$  such that

if 
$$x_i \prec x_j$$
,  $x_i \in C_p$  and  $x_j \in C_q$  then  $C_p \prec C_q$  or  $C_p = C_q$ .

< □ > < A > < B</p>

## Challenges



- formulation of the term "community"
- edge direction
- topological order of communities

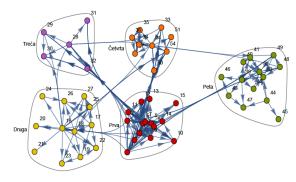



Image: A match a ma

- A - E - N

## Label propagation algorithms

### LPA

- every node is initialized with a unique community label
- these labels propagate through the network
- at every iteration of propagation, each node updates its label to the one that the maximum numbers of its neighbours belongs to. Ties are broken arbitrarily but deterministically
- LPA reaches convergence when each node has the majority label of its neighbours
- LPA stops if either convergence, or the user-defined maximum number of iterations is achieved

## Label propagation algorithms

### LPAm

- modularity-specialized label propagation algorithm
- modified label update rule: choosing a label that will result in maximal modularity increse
- LPAm brings a monotonous increase in modularity and avoids the possibility of forming a trivial solution
- LPAm has the same effective speed as LPA
- however, the tendency is to get stuck at a low local maximum of modularity

# Evolution

## Label propagation algorithms

#### LPAm+

- advanced modularity-specialized label propagation algorithm
- to escape local maxima, algorithm employs a multistep greedy agglomerative algorithm (MSG) that can merge multiple pairs of communities at a time
- LPAm+ successfully detects communities with higher modularity values
- ▶ LPAm+ offers a fair compromise between accuracy and speed

# Evolution

## **Orientation Respecting LPAm**

Alexald I Orientation Describer I DAry (OI DAry)

| Algorithm 1 Orientation Respecting LPAm (OLPAm)                                                                |         |     |     |
|----------------------------------------------------------------------------------------------------------------|---------|-----|-----|
| Require: Edge list                                                                                             |         |     |     |
| Ensure: Community division, modularity                                                                         |         |     |     |
| 1: to each vertex <i>i</i> assign a unique numerical label $l_i(0) = p(i)$                                     |         |     |     |
| 2: set $t = 1$                                                                                                 |         |     |     |
| 3: repeat                                                                                                      |         |     |     |
| 4: put vertices in random order X                                                                              |         |     |     |
| 5: for each vertex $i \in X$ do                                                                                |         |     |     |
| 6: among in-neighbors $x_{i_1}, x_{i_2},, x_{i_k}$ of vertex $i$ with labels $l_{i_1}, l_{i_2},, l_{i_k}$ find |         |     |     |
| the largest label $l_{max}$                                                                                    |         |     |     |
| 7: among out-neighbors $x_{i_{k+1}}, x_{i_{k+2}}, \dots, x_{i_n}$ of vertex <i>i</i> with labels               |         |     |     |
| $l_{i_{k+1}}, l_{i_{k+2}}, \dots, l_{i_n}$ find the smallest label $l_{min}$                                   |         |     |     |
| 8: calculate $\Delta Q_d(i, max)$ and $\Delta Q_d(i, min)$                                                     |         |     |     |
| 9: <b>if</b> $\Delta Q_d(i, max) > \Delta Q_d(i, min)$ and $\Delta Q_d(i, max) > 0$ <b>then</b>                |         |     |     |
| 10: set $l_i(t) = l_{max}$                                                                                     |         |     |     |
| 11: else if $\Delta Q_d(i, min) > \Delta Q_d(i, max)$ and $\Delta Q_d(i, min) > 0$ then                        |         |     |     |
| 12: set $l_i(t) = l_{min}$                                                                                     |         |     |     |
| 13: else if $\Delta Q_d(i, min) = \Delta Q_d(i, max) > 0$ then                                                 |         |     |     |
| 14: uniformly at random pick $l_{max}$ or $l_{min}$ and set it for $l_i$                                       |         |     |     |
| 15: end if                                                                                                     |         |     |     |
| 16: set $t = t + 1$                                                                                            |         |     |     |
| 17: end for                                                                                                    |         |     |     |
| 18: if neither of vertices $i \in X$ changes its label then                                                    |         |     |     |
| 19: end algorithm                                                                                              |         |     |     |
| 20: else                                                                                                       |         |     |     |
| 21: set $t = t + 1$                                                                                            |         |     |     |
| 22: end if                                                                                                     |         |     |     |
| 23: until neither vertex in the iteration changes its label                                                    | _       | _   |     |
|                                                                                                                | → ▲ 문 ► | - 2 | うくぐ |

#### CroCoDays 2024

## **Orientation Respecting LPAm+**

Algorithm 2 Orientation Respecting LPAm+ ( OLPAm+)

- 1: assign to each vertex a unique numeric label
- 2: using OLPAm algorithm maximize modularity Q<sub>d</sub>
- 3: while there are communities  $A_i$  and  $A_j$  such that  $\Delta Q_d(l_i l_j) > 0$  do
- for each community A<sub>i</sub> do
- 5: calculate  $\Delta Q_d(l_i l_{max})$  and  $\Delta Q_d(l_i l_{min})$
- 6: end for
- find the maximal value of all ΔQ<sub>d</sub>(l<sub>i</sub>l<sub>j</sub>) > 0
- 8: merge communities  $A_i$  and  $A_j$  such that  $\Delta Q_d(l_i l_j) > 0$  is maximal
- 9: maximize modularity Q<sub>d</sub> using OLPAm algorithm
- 10: end while

Algorithm 3 Modified OLPAm+ with multiple merging of communities

- 1: assign to each vertex a unique numeric label
- 2: using OLPAm algorithm maximize modularity  $Q_d$
- 3: while  $\exists$  pair of communities  $(A_i, A_j)$  such that  $\Delta Q(l_i, l_j) > 0$  do
- 4: for each pair of connected communities  $(A_i, A_j)$  where  $\Delta Q(l_i, l_j) > 0$  do
- 5: if there is no community A labeled l such that  $\Delta Q(l, l_i) > \Delta Q(l_i, l_j)$  and  $\Delta Q(l, l_j) > \Delta Q(l_i, l_j)$  then
- merge communities A<sub>i</sub> and A<sub>j</sub>
- 7: end if
- 8: end for
- 9: maximize modularity  $Q_d$  using OLPAm algorithm
- 10: end while

#### CroCoDays 2024

September 2024. 15 / 20



#### Table: Basic statistics for curriculum networks.

| Network                 | п   | т   | d <sub>in</sub> | d <sub>out</sub> | d <sub>avg</sub> | I     | С     |
|-------------------------|-----|-----|-----------------|------------------|------------------|-------|-------|
| Number set $\mathbb{Q}$ | 47  | 254 | 17              | 26               | 5.404            | 2.011 | 0.254 |
| Elementary functions    | 84  | 502 | 27              | 51               | 5.976            | 2.132 | 0.255 |
| Integral                | 223 | 655 | 15              | 28               | 2.941            | 3.899 | 0.084 |
| Physics                 | 31  | 49  | 4               | 8                | 1.581            | 1.575 | 0.049 |
| Primary production      | 28  | 93  | 9               | 14               | 3.321            | 2.135 | 0.183 |
| Data processing         | 54  | 197 | 12              | 22               | 3.648            | 1.744 | 0.338 |

3

イロト イボト イヨト イヨト

Table: Comparison of the results obtained using the OLPAm+ with the results suggested by the experts who compiled the curriculum networks.

|                         |     |     | Expe  | ert            | OLPAm-           | +     |
|-------------------------|-----|-----|-------|----------------|------------------|-------|
|                         | п   | т   | $Q_d$ | N <sub>c</sub> | Q <sub>d</sub> N | $V_c$ |
| Number set $\mathbb{Q}$ | 47  | 254 | 0.311 | 5              | 0.377            | 4     |
| Elementary functions    | 84  | 502 | 0.239 | 6              | 0.354            | 4     |
| Integral                | 223 | 655 | 0.455 | 10             | 0.468            | 7     |
| Data processing         | 54  | 197 | 0.389 | 6              | 0.426            | 5     |
| Primary production      | 28  | 93  | 0.237 | 3              | 0.293            | 3     |
| Physics                 | 31  | 49  | 0.238 | 6              | 0.476            | 6     |

イロト イヨト イヨト

Table: Comparison of the results obtained using the  $OLPAm+^{(m)}$  with the results suggested by the experts who compiled the curriculum networks.

|                        |     |     | Ехре  | ert            | $OLPAm+^{(m)}$ |
|------------------------|-----|-----|-------|----------------|----------------|
|                        | n   | т   | $Q_d$ | N <sub>c</sub> | $Q_d N_c$      |
| Number set $\mathbb Q$ | 47  | 254 | 0.311 | 5              | 0.377 4        |
| Elementary functions   | 84  | 502 | 0.239 | 6              | 0.337 5        |
| Integral               | 223 | 655 | 0.455 | 10             | 0.470 10       |
| Data processing        | 54  | 197 | 0.389 | 6              | 0.426 5        |
| Primary production     | 28  | 93  | 0.237 | 3              | 0.283 3        |
| Physics                | 31  | 49  | 0.238 | 6              | 0.467 5        |

イロト イヨト イヨト

Table: Comparison of the results obtained using different algorithms for community detection under constrints.

|                  | Expe  | ert            | RA    | RA             |   | OLPAm+ |                |  | $OLPAm+^{(m)}$ |                |  |
|------------------|-------|----------------|-------|----------------|---|--------|----------------|--|----------------|----------------|--|
|                  | $Q_d$ | N <sub>c</sub> | $Q_d$ | N <sub>c</sub> |   | $Q_d$  | N <sub>c</sub> |  | $Q_d$          | N <sub>c</sub> |  |
| $\mathbb{Q}$ set | 0.311 | 5              | 0.377 | 4              | ( | 0.377  | 4              |  | 0.377          | 4              |  |
| El. functions    | 0.239 | 6              | 0.286 | 8              | ( | 0.354  | 4              |  | 0.337          | 5              |  |
| Integral         | 0.455 | 10             | 0.484 | 10             | ( | 0.468  | 7              |  | 0.470          | 10             |  |
| Data proc.       | 0.389 | 6              | 0.430 | 6              | ( | 0.426  | 5              |  | 0.426          | 5              |  |
| Pr. prod.        | 0.237 | 3              | 0.259 | 3              | ( | 0.293  | 3              |  | 0.293          | 3              |  |
| Physics          | 0.238 | 6              | 0.375 | 4              | ( | 0.476  | 6              |  | 0.467          | 5              |  |

3

イロト イポト イヨト イヨト

## Thank you for your attention!



"Mathematics reveals its secrets only to those who approach it with pure love, for its own beauty.

- . Archimedes

イロト イヨト イヨト イヨト

|  | nović |
|--|-------|
|  |       |

CroCoDays 2024

September 2024. 20 / 20